Conjuntos de dados do TensorFlow

O TFDS fornece uma coleção de conjuntos de dados prontos para uso com TensorFlow, Jax e outras estruturas de Machine Learning.

Ele trata do download e da preparação dos dados de forma determinística e da construção de um tf.data.Dataset (ou np.array ).

Veja no TensorFlow.org Executar no Google Colab Ver fonte no GitHub Baixar caderno

Instalação

O TFDS existe em dois pacotes:

  • pip install tensorflow-datasets : A versão estável, lançada a cada poucos meses.
  • pip install tfds-nightly : Lançado todos os dias, contém as últimas versões dos conjuntos de dados.

Este colab usa tfds-nightly :

pip install -q tfds-nightly tensorflow matplotlib
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

import tensorflow_datasets as tfds

Encontrar conjuntos de dados disponíveis

Todos os construtores de conjuntos de dados são subclasses de tfds.core.DatasetBuilder . Para obter a lista de construtores disponíveis, use tfds.list_builders() ou consulte nosso catálogo .

tfds.list_builders()
['abstract_reasoning',
 'accentdb',
 'aeslc',
 'aflw2k3d',
 'ag_news_subset',
 'ai2_arc',
 'ai2_arc_with_ir',
 'amazon_us_reviews',
 'anli',
 'arc',
 'asset',
 'assin2',
 'bair_robot_pushing_small',
 'bccd',
 'beans',
 'bee_dataset',
 'big_patent',
 'bigearthnet',
 'billsum',
 'binarized_mnist',
 'binary_alpha_digits',
 'blimp',
 'booksum',
 'bool_q',
 'c4',
 'caltech101',
 'caltech_birds2010',
 'caltech_birds2011',
 'cardiotox',
 'cars196',
 'cassava',
 'cats_vs_dogs',
 'celeb_a',
 'celeb_a_hq',
 'cfq',
 'cherry_blossoms',
 'chexpert',
 'cifar10',
 'cifar100',
 'cifar10_1',
 'cifar10_corrupted',
 'citrus_leaves',
 'cityscapes',
 'civil_comments',
 'clevr',
 'clic',
 'clinc_oos',
 'cmaterdb',
 'cnn_dailymail',
 'coco',
 'coco_captions',
 'coil100',
 'colorectal_histology',
 'colorectal_histology_large',
 'common_voice',
 'coqa',
 'cos_e',
 'cosmos_qa',
 'covid19',
 'covid19sum',
 'crema_d',
 'cs_restaurants',
 'curated_breast_imaging_ddsm',
 'cycle_gan',
 'd4rl_adroit_door',
 'd4rl_adroit_hammer',
 'd4rl_adroit_pen',
 'd4rl_adroit_relocate',
 'd4rl_antmaze',
 'd4rl_mujoco_ant',
 'd4rl_mujoco_halfcheetah',
 'd4rl_mujoco_hopper',
 'd4rl_mujoco_walker2d',
 'dart',
 'davis',
 'deep_weeds',
 'definite_pronoun_resolution',
 'dementiabank',
 'diabetic_retinopathy_detection',
 'diamonds',
 'div2k',
 'dmlab',
 'doc_nli',
 'dolphin_number_word',
 'domainnet',
 'downsampled_imagenet',
 'drop',
 'dsprites',
 'dtd',
 'duke_ultrasound',
 'e2e_cleaned',
 'efron_morris75',
 'emnist',
 'eraser_multi_rc',
 'esnli',
 'eurosat',
 'fashion_mnist',
 'flic',
 'flores',
 'food101',
 'forest_fires',
 'fuss',
 'gap',
 'geirhos_conflict_stimuli',
 'gem',
 'genomics_ood',
 'german_credit_numeric',
 'gigaword',
 'glue',
 'goemotions',
 'gov_report',
 'gpt3',
 'gref',
 'groove',
 'grounded_scan',
 'gsm8k',
 'gtzan',
 'gtzan_music_speech',
 'hellaswag',
 'higgs',
 'horses_or_humans',
 'howell',
 'i_naturalist2017',
 'i_naturalist2018',
 'imagenet2012',
 'imagenet2012_corrupted',
 'imagenet2012_multilabel',
 'imagenet2012_real',
 'imagenet2012_subset',
 'imagenet_a',
 'imagenet_lt',
 'imagenet_r',
 'imagenet_resized',
 'imagenet_sketch',
 'imagenet_v2',
 'imagenette',
 'imagewang',
 'imdb_reviews',
 'irc_disentanglement',
 'iris',
 'istella',
 'kddcup99',
 'kitti',
 'kmnist',
 'lambada',
 'lfw',
 'librispeech',
 'librispeech_lm',
 'libritts',
 'ljspeech',
 'lm1b',
 'locomotion',
 'lost_and_found',
 'lsun',
 'lvis',
 'malaria',
 'math_dataset',
 'math_qa',
 'mctaco',
 'mlqa',
 'mnist',
 'mnist_corrupted',
 'movie_lens',
 'movie_rationales',
 'movielens',
 'moving_mnist',
 'mslr_web',
 'multi_news',
 'multi_nli',
 'multi_nli_mismatch',
 'natural_questions',
 'natural_questions_open',
 'newsroom',
 'nsynth',
 'nyu_depth_v2',
 'ogbg_molpcba',
 'omniglot',
 'open_images_challenge2019_detection',
 'open_images_v4',
 'openbookqa',
 'opinion_abstracts',
 'opinosis',
 'opus',
 'oxford_flowers102',
 'oxford_iiit_pet',
 'para_crawl',
 'pass',
 'patch_camelyon',
 'paws_wiki',
 'paws_x_wiki',
 'penguins',
 'pet_finder',
 'pg19',
 'piqa',
 'places365_small',
 'plant_leaves',
 'plant_village',
 'plantae_k',
 'protein_net',
 'qa4mre',
 'qasc',
 'quac',
 'quality',
 'quickdraw_bitmap',
 'race',
 'radon',
 'reddit',
 'reddit_disentanglement',
 'reddit_tifu',
 'ref_coco',
 'resisc45',
 'rlu_atari',
 'rlu_atari_checkpoints',
 'rlu_atari_checkpoints_ordered',
 'rlu_dmlab_explore_object_rewards_few',
 'rlu_dmlab_explore_object_rewards_many',
 'rlu_dmlab_rooms_select_nonmatching_object',
 'rlu_dmlab_rooms_watermaze',
 'rlu_dmlab_seekavoid_arena01',
 'rlu_rwrl',
 'robomimic_ph',
 'robonet',
 'robosuite_panda_pick_place_can',
 'rock_paper_scissors',
 'rock_you',
 's3o4d',
 'salient_span_wikipedia',
 'samsum',
 'savee',
 'scan',
 'scene_parse150',
 'schema_guided_dialogue',
 'scicite',
 'scientific_papers',
 'scrolls',
 'sentiment140',
 'shapes3d',
 'siscore',
 'smallnorb',
 'smartwatch_gestures',
 'snli',
 'so2sat',
 'speech_commands',
 'spoken_digit',
 'squad',
 'squad_question_generation',
 'stanford_dogs',
 'stanford_online_products',
 'star_cfq',
 'starcraft_video',
 'stl10',
 'story_cloze',
 'summscreen',
 'sun397',
 'super_glue',
 'svhn_cropped',
 'symmetric_solids',
 'tao',
 'ted_hrlr_translate',
 'ted_multi_translate',
 'tedlium',
 'tf_flowers',
 'the300w_lp',
 'tiny_shakespeare',
 'titanic',
 'trec',
 'trivia_qa',
 'tydi_qa',
 'uc_merced',
 'ucf101',
 'vctk',
 'visual_domain_decathlon',
 'voc',
 'voxceleb',
 'voxforge',
 'waymo_open_dataset',
 'web_nlg',
 'web_questions',
 'wider_face',
 'wiki40b',
 'wiki_auto',
 'wiki_bio',
 'wiki_table_questions',
 'wiki_table_text',
 'wikiann',
 'wikihow',
 'wikipedia',
 'wikipedia_toxicity_subtypes',
 'wine_quality',
 'winogrande',
 'wit',
 'wit_kaggle',
 'wmt13_translate',
 'wmt14_translate',
 'wmt15_translate',
 'wmt16_translate',
 'wmt17_translate',
 'wmt18_translate',
 'wmt19_translate',
 'wmt_t2t_translate',
 'wmt_translate',
 'wordnet',
 'wsc273',
 'xnli',
 'xquad',
 'xsum',
 'xtreme_pawsx',
 'xtreme_xnli',
 'yelp_polarity_reviews',
 'yes_no',
 'youtube_vis',
 'huggingface:acronym_identification',
 'huggingface:ade_corpus_v2',
 'huggingface:adversarial_qa',
 'huggingface:aeslc',
 'huggingface:afrikaans_ner_corpus',
 'huggingface:ag_news',
 'huggingface:ai2_arc',
 'huggingface:air_dialogue',
 'huggingface:ajgt_twitter_ar',
 'huggingface:allegro_reviews',
 'huggingface:allocine',
 'huggingface:alt',
 'huggingface:amazon_polarity',
 'huggingface:amazon_reviews_multi',
 'huggingface:amazon_us_reviews',
 'huggingface:ambig_qa',
 'huggingface:americas_nli',
 'huggingface:ami',
 'huggingface:amttl',
 'huggingface:anli',
 'huggingface:app_reviews',
 'huggingface:aqua_rat',
 'huggingface:aquamuse',
 'huggingface:ar_cov19',
 'huggingface:ar_res_reviews',
 'huggingface:ar_sarcasm',
 'huggingface:arabic_billion_words',
 'huggingface:arabic_pos_dialect',
 'huggingface:arabic_speech_corpus',
 'huggingface:arcd',
 'huggingface:arsentd_lev',
 'huggingface:art',
 'huggingface:arxiv_dataset',
 'huggingface:ascent_kb',
 'huggingface:aslg_pc12',
 'huggingface:asnq',
 'huggingface:asset',
 'huggingface:assin',
 'huggingface:assin2',
 'huggingface:atomic',
 'huggingface:autshumato',
 'huggingface:babi_qa',
 'huggingface:banking77',
 'huggingface:bbaw_egyptian',
 'huggingface:bbc_hindi_nli',
 'huggingface:bc2gm_corpus',
 'huggingface:beans',
 'huggingface:best2009',
 'huggingface:bianet',
 'huggingface:bible_para',
 'huggingface:big_patent',
 'huggingface:billsum',
 'huggingface:bing_coronavirus_query_set',
 'huggingface:biomrc',
 'huggingface:biosses',
 'huggingface:blbooksgenre',
 'huggingface:blended_skill_talk',
 'huggingface:blimp',
 'huggingface:blog_authorship_corpus',
 'huggingface:bn_hate_speech',
 'huggingface:bookcorpus',
 'huggingface:bookcorpusopen',
 'huggingface:boolq',
 'huggingface:bprec',
 'huggingface:break_data',
 'huggingface:brwac',
 'huggingface:bsd_ja_en',
 'huggingface:bswac',
 'huggingface:c3',
 'huggingface:c4',
 'huggingface:cail2018',
 'huggingface:caner',
 'huggingface:capes',
 'huggingface:casino',
 'huggingface:catalonia_independence',
 'huggingface:cats_vs_dogs',
 'huggingface:cawac',
 'huggingface:cbt',
 'huggingface:cc100',
 'huggingface:cc_news',
 'huggingface:ccaligned_multilingual',
 'huggingface:cdsc',
 'huggingface:cdt',
 'huggingface:cedr',
 'huggingface:cfq',
 'huggingface:chr_en',
 'huggingface:cifar10',
 'huggingface:cifar100',
 'huggingface:circa',
 'huggingface:civil_comments',
 'huggingface:clickbait_news_bg',
 'huggingface:climate_fever',
 'huggingface:clinc_oos',
 'huggingface:clue',
 'huggingface:cmrc2018',
 'huggingface:cmu_hinglish_dog',
 'huggingface:cnn_dailymail',
 'huggingface:coached_conv_pref',
 'huggingface:coarse_discourse',
 'huggingface:codah',
 'huggingface:code_search_net',
 'huggingface:code_x_glue_cc_clone_detection_big_clone_bench',
 'huggingface:code_x_glue_cc_clone_detection_poj104',
 'huggingface:code_x_glue_cc_cloze_testing_all',
 'huggingface:code_x_glue_cc_cloze_testing_maxmin',
 'huggingface:code_x_glue_cc_code_completion_line',
 'huggingface:code_x_glue_cc_code_completion_token',
 'huggingface:code_x_glue_cc_code_refinement',
 'huggingface:code_x_glue_cc_code_to_code_trans',
 'huggingface:code_x_glue_cc_defect_detection',
 'huggingface:code_x_glue_ct_code_to_text',
 'huggingface:code_x_glue_tc_nl_code_search_adv',
 'huggingface:code_x_glue_tc_text_to_code',
 'huggingface:code_x_glue_tt_text_to_text',
 'huggingface:com_qa',
 'huggingface:common_gen',
 'huggingface:common_language',
 'huggingface:common_voice',
 'huggingface:commonsense_qa',
 'huggingface:competition_math',
 'huggingface:compguesswhat',
 'huggingface:conceptnet5',
 'huggingface:conll2000',
 'huggingface:conll2002',
 'huggingface:conll2003',
 'huggingface:conllpp',
 'huggingface:conv_ai',
 'huggingface:conv_ai_2',
 'huggingface:conv_ai_3',
 'huggingface:conv_questions',
 'huggingface:coqa',
 'huggingface:cord19',
 'huggingface:cornell_movie_dialog',
 'huggingface:cos_e',
 'huggingface:cosmos_qa',
 'huggingface:counter',
 'huggingface:covid_qa_castorini',
 'huggingface:covid_qa_deepset',
 'huggingface:covid_qa_ucsd',
 'huggingface:covid_tweets_japanese',
 'huggingface:covost2',
 'huggingface:craigslist_bargains',
 'huggingface:crawl_domain',
 'huggingface:crd3',
 'huggingface:crime_and_punish',
 'huggingface:crows_pairs',
 'huggingface:cryptonite',
 'huggingface:cs_restaurants',
 'huggingface:cuad',
 'huggingface:curiosity_dialogs',
 'huggingface:daily_dialog',
 'huggingface:dane',
 'huggingface:danish_political_comments',
 'huggingface:dart',
 'huggingface:datacommons_factcheck',
 'huggingface:dbpedia_14',
 'huggingface:dbrd',
 'huggingface:deal_or_no_dialog',
 'huggingface:definite_pronoun_resolution',
 'huggingface:dengue_filipino',
 'huggingface:dialog_re',
 'huggingface:diplomacy_detection',
 'huggingface:disaster_response_messages',
 'huggingface:discofuse',
 'huggingface:discovery',
 'huggingface:disfl_qa',
 'huggingface:doc2dial',
 'huggingface:docred',
 'huggingface:doqa',
 'huggingface:dream',
 'huggingface:drop',
 'huggingface:duorc',
 'huggingface:dutch_social',
 'huggingface:dyk',
 'huggingface:e2e_nlg',
 'huggingface:e2e_nlg_cleaned',
 'huggingface:ecb',
 'huggingface:ecthr_cases',
 'huggingface:eduge',
 'huggingface:ehealth_kd',
 'huggingface:eitb_parcc',
 'huggingface:eli5',
 'huggingface:eli5_category',
 'huggingface:emea',
 'huggingface:emo',
 'huggingface:emotion',
 'huggingface:emotone_ar',
 'huggingface:empathetic_dialogues',
 'huggingface:enriched_web_nlg',
 'huggingface:eraser_multi_rc',
 'huggingface:esnli',
 'huggingface:eth_py150_open',
 'huggingface:ethos',
 'huggingface:eu_regulatory_ir',
 'huggingface:eurlex',
 'huggingface:euronews',
 'huggingface:europa_eac_tm',
 'huggingface:europa_ecdc_tm',
 'huggingface:europarl_bilingual',
 'huggingface:event2Mind',
 'huggingface:evidence_infer_treatment',
 'huggingface:exams',
 'huggingface:factckbr',
 'huggingface:fake_news_english',
 'huggingface:fake_news_filipino',
 'huggingface:farsi_news',
 'huggingface:fashion_mnist',
 'huggingface:fever',
 'huggingface:few_rel',
 'huggingface:financial_phrasebank',
 'huggingface:finer',
 'huggingface:flores',
 'huggingface:flue',
 'huggingface:food101',
 'huggingface:fquad',
 'huggingface:freebase_qa',
 'huggingface:gap',
 'huggingface:gem',
 'huggingface:generated_reviews_enth',
 'huggingface:generics_kb',
 'huggingface:german_legal_entity_recognition',
 'huggingface:germaner',
 'huggingface:germeval_14',
 'huggingface:giga_fren',
 'huggingface:gigaword',
 'huggingface:glucose',
 'huggingface:glue',
 'huggingface:gnad10',
 'huggingface:go_emotions',
 'huggingface:gooaq',
 'huggingface:google_wellformed_query',
 'huggingface:grail_qa',
 'huggingface:great_code',
 'huggingface:greek_legal_code',
 'huggingface:guardian_authorship',
 'huggingface:gutenberg_time',
 'huggingface:hans',
 'huggingface:hansards',
 'huggingface:hard',
 'huggingface:harem',
 'huggingface:has_part',
 'huggingface:hate_offensive',
 'huggingface:hate_speech18',
 'huggingface:hate_speech_filipino',
 'huggingface:hate_speech_offensive',
 'huggingface:hate_speech_pl',
 'huggingface:hate_speech_portuguese',
 'huggingface:hatexplain',
 'huggingface:hausa_voa_ner',
 'huggingface:hausa_voa_topics',
 'huggingface:hda_nli_hindi',
 'huggingface:head_qa',
 'huggingface:health_fact',
 'huggingface:hebrew_projectbenyehuda',
 'huggingface:hebrew_sentiment',
 'huggingface:hebrew_this_world',
 'huggingface:hellaswag',
 'huggingface:hendrycks_test',
 'huggingface:hind_encorp',
 'huggingface:hindi_discourse',
 'huggingface:hippocorpus',
 'huggingface:hkcancor',
 'huggingface:hlgd',
 'huggingface:hope_edi',
 'huggingface:hotpot_qa',
 'huggingface:hover',
 'huggingface:hrenwac_para',
 'huggingface:hrwac',
 'huggingface:humicroedit',
 'huggingface:hybrid_qa',
 'huggingface:hyperpartisan_news_detection',
 'huggingface:iapp_wiki_qa_squad',
 'huggingface:id_clickbait',
 'huggingface:id_liputan6',
 'huggingface:id_nergrit_corpus',
 'huggingface:id_newspapers_2018',
 'huggingface:id_panl_bppt',
 'huggingface:id_puisi',
 'huggingface:igbo_english_machine_translation',
 'huggingface:igbo_monolingual',
 'huggingface:igbo_ner',
 'huggingface:ilist',
 'huggingface:imdb',
 'huggingface:imdb_urdu_reviews',
 'huggingface:imppres',
 'huggingface:indic_glue',
 'huggingface:indonli',
 'huggingface:indonlu',
 'huggingface:inquisitive_qg',
 'huggingface:interpress_news_category_tr',
 'huggingface:interpress_news_category_tr_lite',
 'huggingface:irc_disentangle',
 'huggingface:isixhosa_ner_corpus',
 'huggingface:isizulu_ner_corpus',
 'huggingface:iwslt2017',
 'huggingface:jeopardy',
 'huggingface:jfleg',
 'huggingface:jigsaw_toxicity_pred',
 'huggingface:jigsaw_unintended_bias',
 'huggingface:jnlpba',
 'huggingface:journalists_questions',
 'huggingface:kan_hope',
 'huggingface:kannada_news',
 'huggingface:kd_conv',
 'huggingface:kde4',
 'huggingface:kelm',
 'huggingface:kilt_tasks',
 'huggingface:kilt_wikipedia',
 'huggingface:kinnews_kirnews',
 'huggingface:klue',
 'huggingface:kor_3i4k',
 'huggingface:kor_hate',
 'huggingface:kor_ner',
 'huggingface:kor_nli',
 'huggingface:kor_nlu',
 'huggingface:kor_qpair',
 'huggingface:kor_sae',
 'huggingface:kor_sarcasm',
 'huggingface:labr',
 'huggingface:lama',
 'huggingface:lambada',
 'huggingface:large_spanish_corpus',
 'huggingface:laroseda',
 'huggingface:lc_quad',
 'huggingface:lener_br',
 'huggingface:lex_glue',
 'huggingface:liar',
 'huggingface:librispeech_asr',
 'huggingface:librispeech_lm',
 'huggingface:limit',
 'huggingface:lince',
 'huggingface:linnaeus',
 'huggingface:liveqa',
 'huggingface:lj_speech',
 'huggingface:lm1b',
 'huggingface:lst20',
 'huggingface:m_lama',
 'huggingface:mac_morpho',
 'huggingface:makhzan',
 'huggingface:masakhaner',
 'huggingface:math_dataset',
 'huggingface:math_qa',
 'huggingface:matinf',
 'huggingface:mbpp',
 'huggingface:mc4',
 'huggingface:mc_taco',
 'huggingface:md_gender_bias',
 'huggingface:mdd',
 'huggingface:med_hop',
 'huggingface:medal',
 'huggingface:medical_dialog',
 'huggingface:medical_questions_pairs',
 'huggingface:menyo20k_mt',
 'huggingface:meta_woz',
 'huggingface:metooma',
 'huggingface:metrec',
 'huggingface:miam',
 'huggingface:mkb',
 'huggingface:mkqa',
 'huggingface:mlqa',
 'huggingface:mlsum',
 'huggingface:mnist',
 'huggingface:mocha',
 'huggingface:moroco',
 'huggingface:movie_rationales',
 'huggingface:mrqa',
 'huggingface:ms_marco',
 'huggingface:ms_terms',
 'huggingface:msr_genomics_kbcomp',
 'huggingface:msr_sqa',
 'huggingface:msr_text_compression',
 'huggingface:msr_zhen_translation_parity',
 'huggingface:msra_ner',
 'huggingface:mt_eng_vietnamese',
 'huggingface:muchocine',
 'huggingface:multi_booked',
 'huggingface:multi_eurlex',
 'huggingface:multi_news',
 'huggingface:multi_nli',
 'huggingface:multi_nli_mismatch',
 'huggingface:multi_para_crawl',
 'huggingface:multi_re_qa',
 'huggingface:multi_woz_v22',
 'huggingface:multi_x_science_sum',
 'huggingface:multidoc2dial',
 'huggingface:multilingual_librispeech',
 'huggingface:mutual_friends',
 'huggingface:mwsc',
 'huggingface:myanmar_news',
 'huggingface:narrativeqa',
 'huggingface:narrativeqa_manual',
 'huggingface:natural_questions',
 'huggingface:ncbi_disease',
 'huggingface:nchlt',
 'huggingface:ncslgr',
 'huggingface:nell',
 'huggingface:neural_code_search',
 'huggingface:news_commentary',
 'huggingface:newsgroup',
 'huggingface:newsph',
 'huggingface:newsph_nli',
 'huggingface:newspop',
 'huggingface:newsqa',
 'huggingface:newsroom',
 'huggingface:nkjp-ner',
 'huggingface:nli_tr',
 'huggingface:nlu_evaluation_data',
 'huggingface:norec',
 'huggingface:norne',
 'huggingface:norwegian_ner',
 'huggingface:nq_open',
 'huggingface:nsmc',
 'huggingface:numer_sense',
 'huggingface:numeric_fused_head',
 'huggingface:oclar',
 'huggingface:offcombr',
 'huggingface:offenseval2020_tr',
 'huggingface:offenseval_dravidian',
 'huggingface:ofis_publik',
 'huggingface:ohsumed',
 'huggingface:ollie',
 'huggingface:omp',
 'huggingface:onestop_english',
 'huggingface:onestop_qa',
 'huggingface:open_subtitles',
 'huggingface:openai_humaneval',
 'huggingface:openbookqa',
 'huggingface:openslr',
 'huggingface:openwebtext',
 'huggingface:opinosis',
 'huggingface:opus100',
 'huggingface:opus_books',
 'huggingface:opus_dgt',
 'huggingface:opus_dogc',
 'huggingface:opus_elhuyar',
 'huggingface:opus_euconst',
 'huggingface:opus_finlex',
 'huggingface:opus_fiskmo',
 'huggingface:opus_gnome',
 'huggingface:opus_infopankki',
 'huggingface:opus_memat',
 'huggingface:opus_montenegrinsubs',
 'huggingface:opus_openoffice',
 'huggingface:opus_paracrawl',
 'huggingface:opus_rf',
 'huggingface:opus_tedtalks',
 'huggingface:opus_ubuntu',
 'huggingface:opus_wikipedia',
 'huggingface:opus_xhosanavy',
 'huggingface:orange_sum',
 'huggingface:oscar',
 'huggingface:para_crawl',
 'huggingface:para_pat',
 'huggingface:parsinlu_reading_comprehension',
 'huggingface:paws',
 'huggingface:paws-x',
 'huggingface:pec',
 'huggingface:peer_read',
 'huggingface:peoples_daily_ner',
 'huggingface:per_sent',
 'huggingface:persian_ner',
 'huggingface:pg19',
 'huggingface:php',
 'huggingface:piaf',
 'huggingface:pib',
 'huggingface:piqa',
 'huggingface:pn_summary',
 'huggingface:poem_sentiment',
 'huggingface:polemo2',
 'huggingface:poleval2019_cyberbullying',
 'huggingface:poleval2019_mt',
 'huggingface:polsum',
 'huggingface:polyglot_ner',
 'huggingface:prachathai67k',
 'huggingface:pragmeval',
 'huggingface:proto_qa',
 'huggingface:psc',
 'huggingface:ptb_text_only',
 'huggingface:pubmed',
 'huggingface:pubmed_qa',
 'huggingface:py_ast',
 'huggingface:qa4mre',
 'huggingface:qa_srl',
 'huggingface:qa_zre',
 'huggingface:qangaroo',
 'huggingface:qanta',
 'huggingface:qasc',
 'huggingface:qasper',
 'huggingface:qed',
 'huggingface:qed_amara',
 'huggingface:quac',
 'huggingface:quail',
 'huggingface:quarel',
 'huggingface:quartz',
 'huggingface:quora',
 'huggingface:quoref',
 'huggingface:race',
 'huggingface:re_dial',
 'huggingface:reasoning_bg',
 'huggingface:recipe_nlg',
 'huggingface:reclor',
 'huggingface:reddit',
 'huggingface:reddit_tifu',
 'huggingface:refresd',
 'huggingface:reuters21578',
 'huggingface:riddle_sense',
 'huggingface:ro_sent',
 'huggingface:ro_sts',
 'huggingface:ro_sts_parallel',
 'huggingface:roman_urdu',
 'huggingface:ronec',
 'huggingface:ropes',
 'huggingface:rotten_tomatoes',
 'huggingface:russian_super_glue',
 'huggingface:s2orc',
 'huggingface:samsum',
 'huggingface:sanskrit_classic',
 'huggingface:saudinewsnet',
 'huggingface:sberquad',
 'huggingface:scan',
 'huggingface:scb_mt_enth_2020',
 'huggingface:schema_guided_dstc8',
 'huggingface:scicite',
 'huggingface:scielo',
 'huggingface:scientific_papers',
 'huggingface:scifact',
 'huggingface:sciq',
 'huggingface:scitail',
 'huggingface:scitldr',
 'huggingface:search_qa',
 'huggingface:sede',
 'huggingface:selqa',
 'huggingface:sem_eval_2010_task_8',
 'huggingface:sem_eval_2014_task_1',
 'huggingface:sem_eval_2018_task_1',
 'huggingface:sem_eval_2020_task_11',
 'huggingface:sent_comp',
 'huggingface:senti_lex',
 'huggingface:senti_ws',
 'huggingface:sentiment140',
 'huggingface:sepedi_ner',
 'huggingface:sesotho_ner_corpus',
 'huggingface:setimes',
 'huggingface:setswana_ner_corpus',
 'huggingface:sharc',
 'huggingface:sharc_modified',
 'huggingface:sick',
 'huggingface:silicone',
 'huggingface:simple_questions_v2',
 'huggingface:siswati_ner_corpus',
 'huggingface:smartdata',
 'huggingface:sms_spam',
 'huggingface:snips_built_in_intents',
 'huggingface:snli',
 'huggingface:snow_simplified_japanese_corpus',
 'huggingface:so_stacksample',
 'huggingface:social_bias_frames',
 'huggingface:social_i_qa',
 'huggingface:sofc_materials_articles',
 'huggingface:sogou_news',
 'huggingface:spanish_billion_words',
 'huggingface:spc',
 'huggingface:species_800',
 'huggingface:speech_commands',
 'huggingface:spider',
 'huggingface:squad',
 'huggingface:squad_adversarial',
 'huggingface:squad_es',
 'huggingface:squad_it',
 'huggingface:squad_kor_v1',
 'huggingface:squad_kor_v2',
 'huggingface:squad_v1_pt',
 'huggingface:squad_v2',
 'huggingface:squadshifts',
 'huggingface:srwac',
 'huggingface:sst',
 'huggingface:stereoset',
 'huggingface:story_cloze',
 'huggingface:stsb_mt_sv',
 'huggingface:stsb_multi_mt',
 'huggingface:style_change_detection',
 'huggingface:subjqa',
 'huggingface:super_glue',
 'huggingface:superb',
 'huggingface:swag',
 'huggingface:swahili',
 'huggingface:swahili_news',
 'huggingface:swda',
 'huggingface:swedish_medical_ner',
 'huggingface:swedish_ner_corpus',
 'huggingface:swedish_reviews',
 'huggingface:swiss_judgment_prediction',
 'huggingface:tab_fact',
 'huggingface:tamilmixsentiment',
 'huggingface:tanzil',
 'huggingface:tapaco',
 'huggingface:tashkeela',
 'huggingface:taskmaster1',
 'huggingface:taskmaster2',
 'huggingface:taskmaster3',
 'huggingface:tatoeba',
 'huggingface:ted_hrlr',
 'huggingface:ted_iwlst2013',
 'huggingface:ted_multi',
 'huggingface:ted_talks_iwslt',
 'huggingface:telugu_books',
 'huggingface:telugu_news',
 'huggingface:tep_en_fa_para',
 'huggingface:thai_toxicity_tweet',
 'huggingface:thainer',
 'huggingface:thaiqa_squad',
 'huggingface:thaisum',
 'huggingface:the_pile',
 'huggingface:the_pile_books3',
 'huggingface:the_pile_openwebtext2',
 'huggingface:the_pile_stack_exchange',
 'huggingface:tilde_model',
 'huggingface:time_dial',
 'huggingface:times_of_india_news_headlines',
 'huggingface:timit_asr',
 'huggingface:tiny_shakespeare',
 'huggingface:tlc',
 'huggingface:tmu_gfm_dataset',
 'huggingface:totto',
 'huggingface:trec',
 'huggingface:trivia_qa',
 'huggingface:tsac',
 'huggingface:ttc4900',
 'huggingface:tunizi',
 'huggingface:tuple_ie',
 'huggingface:turk',
 'huggingface:turkish_movie_sentiment',
 'huggingface:turkish_ner',
 'huggingface:turkish_product_reviews',
 'huggingface:turkish_shrinked_ner',
 'huggingface:turku_ner_corpus',
 'huggingface:tweet_eval',
 'huggingface:tweet_qa',
 'huggingface:tweets_ar_en_parallel',
 'huggingface:tweets_hate_speech_detection',
 'huggingface:twi_text_c3',
 'huggingface:twi_wordsim353',
 'huggingface:tydiqa',
 'huggingface:ubuntu_dialogs_corpus',
 'huggingface:udhr',
 'huggingface:um005',
 'huggingface:un_ga',
 'huggingface:un_multi',
 'huggingface:un_pc',
 'huggingface:universal_dependencies',
 'huggingface:universal_morphologies',
 'huggingface:urdu_fake_news',
 'huggingface:urdu_sentiment_corpus',
 'huggingface:vctk',
 'huggingface:vivos',
 'huggingface:web_nlg',
 'huggingface:web_of_science',
 'huggingface:web_questions',
 'huggingface:weibo_ner',
 'huggingface:wi_locness',
 'huggingface:wiki40b',
 'huggingface:wiki_asp',
 'huggingface:wiki_atomic_edits',
 'huggingface:wiki_auto',
 'huggingface:wiki_bio',
 'huggingface:wiki_dpr',
 'huggingface:wiki_hop',
 'huggingface:wiki_lingua',
 'huggingface:wiki_movies',
 'huggingface:wiki_qa',
 'huggingface:wiki_qa_ar',
 'huggingface:wiki_snippets',
 'huggingface:wiki_source',
 'huggingface:wiki_split',
 'huggingface:wiki_summary',
 'huggingface:wikiann',
 'huggingface:wikicorpus',
 'huggingface:wikihow',
 'huggingface:wikipedia',
 'huggingface:wikisql',
 'huggingface:wikitext',
 'huggingface:wikitext_tl39',
 'huggingface:wili_2018',
 'huggingface:wino_bias',
 'huggingface:winograd_wsc',
 'huggingface:winogrande',
 'huggingface:wiqa',
 'huggingface:wisesight1000',
 'huggingface:wisesight_sentiment',
 ...]

Carregar um conjunto de dados

tfds.load

A maneira mais fácil de carregar um conjunto de dados é tfds.load . Ele vai:

  1. Baixe os dados e salve-os como arquivos tfrecord .
  2. Carregue o tfrecord e crie o tf.data.Dataset .
ds = tfds.load('mnist', split='train', shuffle_files=True)
assert isinstance(ds, tf.data.Dataset)
print(ds)
<_OptionsDataset element_spec={'image': TensorSpec(shape=(28, 28, 1), dtype=tf.uint8, name=None), 'label': TensorSpec(shape=(), dtype=tf.int64, name=None)}>
2022-02-07 04:07:40.542243: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected

Alguns argumentos comuns:

  • split= : Qual divisão ler (por exemplo 'train' , ['train', 'test'] , 'train[80%:]' ,...). Consulte nosso guia de API dividida .
  • shuffle_files= : Controla se os arquivos devem ser embaralhados entre cada época (o TFDS armazena grandes conjuntos de dados em vários arquivos menores).
  • data_dir= : Local onde o conjunto de dados é salvo (o padrão é ~/tensorflow_datasets/ )
  • with_info=True : Retorna o tfds.core.DatasetInfo contendo metadados do conjunto de dados
  • download=False : Desativar download

tfds.builder

tfds.load é um wrapper fino em torno tfds.core.DatasetBuilder . Você pode obter a mesma saída usando a API tfds.core.DatasetBuilder :

builder = tfds.builder('mnist')
# 1. Create the tfrecord files (no-op if already exists)
builder.download_and_prepare()
# 2. Load the `tf.data.Dataset`
ds = builder.as_dataset(split='train', shuffle_files=True)
print(ds)
<_OptionsDataset element_spec={'image': TensorSpec(shape=(28, 28, 1), dtype=tf.uint8, name=None), 'label': TensorSpec(shape=(), dtype=tf.int64, name=None)}>

tfds build CLI

Se você deseja gerar um conjunto de dados específico, pode usar a linha de comando tfds . Por exemplo:

tfds build mnist

Consulte o documento para sinalizações disponíveis.

Iterar em um conjunto de dados

Como ditado

Por padrão, o objeto tf.data.Dataset contém um dict de tf.Tensor s:

ds = tfds.load('mnist', split='train')
ds = ds.take(1)  # Only take a single example

for example in ds:  # example is `{'image': tf.Tensor, 'label': tf.Tensor}`
  print(list(example.keys()))
  image = example["image"]
  label = example["label"]
  print(image.shape, label)
['image', 'label']
(28, 28, 1) tf.Tensor(4, shape=(), dtype=int64)
2022-02-07 04:07:41.932638: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Para descobrir os nomes e a estrutura das chaves dict , consulte a documentação do conjunto de dados em nosso catálogo . Por exemplo: documentação do mnist .

Como tupla ( as_supervised=True )

Ao usar as_supervised=True , você pode obter uma tupla (features, label) em vez de conjuntos de dados supervisionados.

ds = tfds.load('mnist', split='train', as_supervised=True)
ds = ds.take(1)

for image, label in ds:  # example is (image, label)
  print(image.shape, label)
(28, 28, 1) tf.Tensor(4, shape=(), dtype=int64)
2022-02-07 04:07:42.593594: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Como numpy ( tfds.as_numpy )

Usa tfds.as_numpy para converter:

  • tf.Tensor -> np.array
  • tf.data.Dataset -> Iterator[Tree[np.array]] (A Tree pode ser aninhada arbitrariamente Dict , Tuple )
ds = tfds.load('mnist', split='train', as_supervised=True)
ds = ds.take(1)

for image, label in tfds.as_numpy(ds):
  print(type(image), type(label), label)
<class 'numpy.ndarray'> <class 'numpy.int64'> 4
2022-02-07 04:07:43.220027: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Como tf.Tensor em lote ( batch_size=-1 )

Ao usar batch_size=-1 , você pode carregar o conjunto de dados completo em um único lote.

Isso pode ser combinado com as_supervised=True e tfds.as_numpy para obter os dados como (np.array, np.array) :

image, label = tfds.as_numpy(tfds.load(
    'mnist',
    split='test',
    batch_size=-1,
    as_supervised=True,
))

print(type(image), image.shape)
<class 'numpy.ndarray'> (10000, 28, 28, 1)

Tenha cuidado para que seu conjunto de dados caiba na memória e que todos os exemplos tenham a mesma forma.

Compare seus conjuntos de dados

O benchmarking de um conjunto de dados é uma simples chamada tfds.benchmark em qualquer iterável (por exemplo, tf.data.Dataset , tfds.as_numpy ,...).

ds = tfds.load('mnist', split='train')
ds = ds.batch(32).prefetch(1)

tfds.benchmark(ds, batch_size=32)
tfds.benchmark(ds, batch_size=32)  # Second epoch much faster due to auto-caching
************ Summary ************

Examples/sec (First included) 42295.82 ex/sec (total: 60000 ex, 1.42 sec)
Examples/sec (First only) 131.50 ex/sec (total: 32 ex, 0.24 sec)
Examples/sec (First excluded) 51026.08 ex/sec (total: 59968 ex, 1.18 sec)

************ Summary ************

Examples/sec (First included) 204278.25 ex/sec (total: 60000 ex, 0.29 sec)
Examples/sec (First only) 1444.72 ex/sec (total: 32 ex, 0.02 sec)
Examples/sec (First excluded) 220821.83 ex/sec (total: 59968 ex, 0.27 sec)
  • Não se esqueça de normalizar os resultados por tamanho de lote com batch_size= kwarg.
  • No resumo, o primeiro lote de aquecimento é separado dos outros para capturar o tempo extra de configuração do tf.data.Dataset (por exemplo, inicialização de buffers,...).
  • Observe como a segunda iteração é muito mais rápida devido ao cache automático do TFDS .
  • tfds.benchmark retorna um tfds.core.BenchmarkResult que pode ser inspecionado para análise posterior.

Crie um pipeline de ponta a ponta

Para ir mais longe, você pode olhar:

Visualização

tfds.as_dataframe

Os objetos tf.data.Dataset podem ser convertidos em pandas.DataFrame com tfds.as_dataframe para serem visualizados no Colab .

  • Adicione o tfds.core.DatasetInfo como segundo argumento de tfds.as_dataframe para visualizar imagens, áudios, textos, vídeos,...
  • Use ds.take(x) para exibir apenas os primeiros x exemplos. pandas.DataFrame carregará o conjunto de dados completo na memória e pode ser muito caro para exibir.
ds, info = tfds.load('mnist', split='train', with_info=True)

tfds.as_dataframe(ds.take(4), info)
2022-02-07 04:07:47.001241: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

tfds.show_examples

tfds.show_examples retorna um matplotlib.figure.Figure (somente conjuntos de dados de imagem suportados agora):

ds, info = tfds.load('mnist', split='train', with_info=True)

fig = tfds.show_examples(ds, info)
2022-02-07 04:07:48.083706: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

png

Acesse os metadados do conjunto de dados

Todos os construtores incluem um objeto tfds.core.DatasetInfo contendo os metadados do conjunto de dados.

Pode ser acessado através de:

ds, info = tfds.load('mnist', with_info=True)
builder = tfds.builder('mnist')
info = builder.info

A informação do conjunto de dados contém informações adicionais sobre o conjunto de dados (versão, citação, página inicial, descrição,...).

print(info)
tfds.core.DatasetInfo(
    name='mnist',
    full_name='mnist/3.0.1',
    description="""
    The MNIST database of handwritten digits.
    """,
    homepage='http://yann.lecun.com/exdb/mnist/',
    data_path='gs://tensorflow-datasets/datasets/mnist/3.0.1',
    download_size=11.06 MiB,
    dataset_size=21.00 MiB,
    features=FeaturesDict({
        'image': Image(shape=(28, 28, 1), dtype=tf.uint8),
        'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=10),
    }),
    supervised_keys=('image', 'label'),
    disable_shuffling=False,
    splits={
        'test': <SplitInfo num_examples=10000, num_shards=1>,
        'train': <SplitInfo num_examples=60000, num_shards=1>,
    },
    citation="""@article{lecun2010mnist,
      title={MNIST handwritten digit database},
      author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
      journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
      volume={2},
      year={2010}
    }""",
)

Metadados de recursos (nomes de rótulos, formato de imagem,...)

Acesse o tfds.features.FeatureDict :

info.features
FeaturesDict({
    'image': Image(shape=(28, 28, 1), dtype=tf.uint8),
    'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=10),
})

Número de classes, nomes de rótulos:

print(info.features["label"].num_classes)
print(info.features["label"].names)
print(info.features["label"].int2str(7))  # Human readable version (8 -> 'cat')
print(info.features["label"].str2int('7'))
10
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
7
7

Formas, dtypes:

print(info.features.shape)
print(info.features.dtype)
print(info.features['image'].shape)
print(info.features['image'].dtype)
{'image': (28, 28, 1), 'label': ()}
{'image': tf.uint8, 'label': tf.int64}
(28, 28, 1)
<dtype: 'uint8'>

Metadados de divisão (por exemplo, nomes de divisão, número de exemplos,...)

Acesse o tfds.core.SplitDict :

print(info.splits)
{'test': <SplitInfo num_examples=10000, num_shards=1>, 'train': <SplitInfo num_examples=60000, num_shards=1>}

Divisões disponíveis:

print(list(info.splits.keys()))
['test', 'train']

Obtenha informações sobre divisão individual:

print(info.splits['train'].num_examples)
print(info.splits['train'].filenames)
print(info.splits['train'].num_shards)
60000
['gs://tensorflow-datasets/datasets/mnist/3.0.1/mnist-train.tfrecord-00000-of-00001']
1

Também funciona com a API de subdivisão:

print(info.splits['train[15%:75%]'].num_examples)
print(info.splits['train[15%:75%]'].file_instructions)
36000
[FileInstruction(filename='gs://tensorflow-datasets/datasets/mnist/3.0.1/mnist-train.tfrecord-00000-of-00001', skip=9000, take=36000, num_examples=36000)]

Solução de problemas

Download manual (se o download falhar)

Se o download falhar por algum motivo (por exemplo, offline,...). Você sempre pode baixar manualmente os dados e colocá-los no manual_dir (o padrão é ~/tensorflow_datasets/download/manual/ .

Para descobrir quais URLs baixar, consulte:

Corrigindo NonMatchingChecksumError

O TFDS garante o determinismo validando as somas de verificação dos URLs baixados. Se NonMatchingChecksumError for gerado, pode indicar:

  • O site pode estar inativo (por exemplo 503 status code ). Por favor, verifique a url.
  • Para URLs do Google Drive, tente novamente mais tarde, pois o Drive às vezes rejeita downloads quando muitas pessoas acessam o mesmo URL. Ver erro
  • Os arquivos de conjuntos de dados originais podem ter sido atualizados. Nesse caso, o construtor do conjunto de dados TFDS deve ser atualizado. Por favor, abra um novo problema do Github ou PR:
    • Registre as novas somas de verificação com tfds build --register_checksums
    • Eventualmente, atualize o código de geração do conjunto de dados.
    • Atualizar o conjunto de dados VERSION
    • Atualize o conjunto de dados RELEASE_NOTES : O que causou a alteração das somas de verificação? Alguns exemplos mudaram?
    • Certifique-se de que o conjunto de dados ainda possa ser construído.
    • Envie-nos um PR

Citação

Se você estiver usando tensorflow-datasets para um artigo, inclua a seguinte citação, além de qualquer citação específica para os conjuntos de dados usados ​​(que podem ser encontrados no catálogo de conjuntos de dados ).

@misc{TFDS,
  title = { {TensorFlow Datasets}, A collection of ready-to-use datasets},
  howpublished = {\url{https://www.tensorflow.org/datasets} },
}