在移动设备和 IoT 设备上部署机器学习模型

TensorFlow Lite 是一种用于设备端推断的开源深度学习框架。

查看指南

指南介绍了 TensorFlow Lite 的概念和组件。

查看示例

探索使用 TensorFlow Lite 的 Android 和 iOS 应用。

查看模型

轻松地部署预训练模型。

工作原理

选择模型

选择新模型或重新训练现有模型。

转换

使用 TensorFlow Lite Converter 将 TensorFlow 模型转换为压缩的 FlatBuffer 文件。

部署

获取压缩的 .tflite 文件,并将其加载到移动设备或嵌入式设备中。

优化

通过将 32 位浮点数转换为更高效的 8 位整数进行量化,或者在 GPU 上运行。

常见问题的解决方案

探索帮助解决常见移动和边缘用例的优化模型。

图像分类

识别数百个对象,包括人、活动、动物、植物和地点。

对象检测

使用边界框检测多个对象。是的,包括狗和猫。

智能回复

生成回复建议以输入对话聊天消息。

新闻和通告

了解有益于您推进工作的各种最新动态,并订阅我们的 TensorFlow 每月简报,直接在您的邮箱中收到最新公告。

Dec 12, 2019 
Example on-device model personalization with TensorFlow Lite

Try out a new on-device transfer learning image classification example.

Aug 6, 2019 
Track human poses in real-time on Android

Build a human pose estimation app by detecting the positions of key body parts such as the position of a person’s elbows and/or knees.

Aug 5, 2019 
Introducing float16 quantization for the Model Optimization Toolkit

Post-training float16 quantization reduces TensorFlow Lite model sizes up to 50% while sacrificing very little accuracy - and is great for GPUs!