Operasi
mhlo.abs
(mhlo::AbsOp)
Operasi perut
Sintaksis:
operation ::= `mhlo.abs` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Melakukan operasi abs elemen demi elemen pada tensor operand
dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs
Contoh:
%result = mhlo.abs %operand : tensor<3xi32>
Ciri: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat bilangan bulat tanpa tanda 2/4/8/16/32/64-bit atau bilangan bulat float atau kompleks 4/6/8/16/32/64-bit dengan elemen float 32/64-bit atau bilangan bulat bertanda terkuantisasi seragam 2/4/8/16/32-bit atau bilangan bulat bertanda terkuantisasi seragam per sumbu 2/4/8/16/32-bit atau bilangan bulat tak bertanda terkuantisasi seragam 2/4/8/16/32-bit atau bilangan bulat tak bertanda terkuantisasi seragam per sumbu 2/4/8/16/32-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor berperingkat bilangan bulat tanpa tanda 2/4/8/16/32/64-bit atau bilangan bulat bertanda terkuantisasi seragam 2/4/8/16/32-bit atau bilangan bulat bertanda terkuantisasi seragam per sumbu 2/4/8/16/32-bit atau bilangan bulat tak bertanda terkuantisasi seragam 2/4/8/16/32-bit atau bilangan bulat tak bertanda terkuantisasi seragam per sumbu 2/4/8/16/32-bit |
mhlo.acos
(mhlo::AcosOp)
Operasi Acos
Sintaksis:
operation ::= `mhlo.acos` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Melakukan operasi acos per elemen pada tensor operand
dan menghasilkan tensor result
.
Contoh:
%result = mhlo.acos %operand : tensor<2x2xf32>
Ciri-ciri: CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Antarmuka: InferShapedTypeOpInterface
, InferTypeOpInterface
Operan:
Operan | Keterangan |
---|---|
operand | tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit |
mhlo.acosh
(mhlo::AcoshOp)
Operasi Acosh
Sintaksis:
operation ::= `mhlo.acosh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Melakukan operasi acosh per elemen pada tensor operand
dan menghasilkan tensor result
.
Contoh:
%result = mhlo.acosh %operand : tensor<2x2xf32>
Ciri-ciri: CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Antarmuka: InferShapedTypeOpInterface
, InferTypeOpInterface
Operan:
Operan | Keterangan |
---|---|
operand | tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit |
mhlo.add
(mhlo::AddOp)
Tambahkan operasi
Sintaksis:
operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Melakukan penambahan elemen demi elemen dari dua tensor lhs
dan rhs
dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add
Contoh:
%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>
Ciri: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
rhs | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
mhlo.add_dependency
(mhlo::AddDependencyOp)
Operasi AddDependency
Sintaksis:
operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)
Operasi ini bersifat pribadi bagi kompiler XLA, jadi belum memiliki spesifikasi.
Secara informal, operasi ini memiliki dua operan: operan data dan token. Keluaran dari operasi ini adalah operan data. Ketika digunakan dengan AfterAll, operasi ini memungkinkan pengurutan operasi tanpa efek samping (operasi yang tidak menghasilkan nilai token).
Contoh:
%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat dari tipe float 4/6/8/16/32/64-bit atau bool atau tipe integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau tensor berperingkat dari nilai terkuantisasi integer per sumbu atau token atau token stablehlo |
token | token atau token stablehlo |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor berperingkat dari tipe float 4/6/8/16/32/64-bit atau bool atau tipe integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau tensor berperingkat dari nilai terkuantisasi integer per sumbu atau token atau token stablehlo |
mhlo.after_all
(mhlo::AfterAllOp)
Operasi AfterAll
Sintaksis:
operation ::= `mhlo.after_all` $inputs attr-dict
`:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))
Memastikan bahwa operasi yang menghasilkan inputs
dieksekusi sebelum operasi apa pun yang bergantung pada result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Contoh:
%result = mhlo.after_all %input0, %input1 : !mhlo.token
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
inputs | variadic token |
Hasil:
Hasil | Keterangan |
---|---|
result | token |
mhlo.all_gather
(mhlo::AllGatherOp)
Operasi AllGather
Dalam setiap grup proses di kisi proses, menggabungkan nilai tensor operan dari setiap proses di sepanjang all_gather_dim
dan menghasilkan tensor hasil. computation
diterapkan secara terpisah untuk setiap operan di operands
, menghasilkan satu hasil per operan.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather
Contoh:
%result = "mhlo.all_gather"(%operand) {
all_gather_dim = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
// use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>
Sifat: SameOperandsAndResultElementType
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
all_gather_dim | ::mlir::IntegerAttr | Atribut integer tanpa tanda 64-bit yang nilainya bukan negatif |
replica_groups | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dua bilangan bulat 64-bit 'handle' dan 'type' |
use_global_device_ids | ::mlir::UnitAttr | atribut unit |
Operan:
Operan | Keterangan |
---|---|
operands | variadic dari tensor peringkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau nilai integer terkuantisasi per sumbu |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | variadic dari tensor peringkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau nilai integer terkuantisasi per sumbu |
mhlo.all_reduce
(mhlo::AllReduceOp)
Operasi AllReduce
Dalam setiap grup proses di kisi proses, terapkan computation
fungsi reduksi ke nilai tensor operan dari setiap proses dan hasilkan tensor hasil. computation
diterapkan secara terpisah untuk setiap operan dalam operands
, menghasilkan satu hasil per operan.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Contoh:
%result = "mhlo.all_reduce"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg1, %arg2 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>
Ciri-ciri: InferTensorType
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Antarmuka: InferShapedTypeOpInterface
, InferTypeOpInterface
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dua bilangan bulat 64-bit 'handle' dan 'type' |
use_global_device_ids | ::mlir::UnitAttr | atribut unit |
Operan:
Operan | Keterangan |
---|---|
operands | variadic dari tensor peringkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau nilai integer terkuantisasi per sumbu |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | variadic dari tensor peringkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau nilai integer terkuantisasi per sumbu |
mhlo.all_to_all
(mhlo::AllToAllOp)
Operasi AllToAll
Dalam setiap grup proses di kisi proses, membagi nilai tensor operand
sepanjang split_dimension
menjadi beberapa bagian, menyebarkan bagian yang terbagi di antara proses, menggabungkan bagian yang tersebar sepanjang concat_dimension
dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all
Contoh:
%result = "mhlo.all_to_all"(%operand) {
split_dimension = 1 : i64,
concat_dimension = 0 : i64,
split_count = 2 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>
Ciri: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsElementType
, SameOperandsShape
, SameVariadicOperandSize
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
split_dimension | ::mlir::IntegerAttr | Atribut integer tanpa tanda 64-bit yang nilainya bukan negatif |
concat_dimension | ::mlir::IntegerAttr | Atribut integer tanpa tanda 64-bit yang nilainya bukan negatif |
split_count | ::mlir::IntegerAttr | Atribut integer tanpa tanda 64-bit yang nilainya positif |
replica_groups | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dua bilangan bulat 64-bit 'handle' dan 'type' |
Operan:
Operan | Keterangan |
---|---|
operand | variadic dari tensor peringkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau nilai integer terkuantisasi per sumbu |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | variadic dari tensor peringkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau nilai integer terkuantisasi per sumbu |
mhlo.and
(mhlo::AndOp)
Dan operasi
Sintaksis:
operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Melakukan AND elemen-bijaksana dari dua tensor lhs
dan rhs
dan menghasilkan tensor result
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and
Contoh:
%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>
Ciri: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | tensor peringkat bool atau nilai integer 2/4/8/16/32/64-bit |
rhs | tensor peringkat bool atau nilai integer 2/4/8/16/32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
mhlo.asin
(mhlo::AsinOp)
Operasi Asin
Sintaksis:
operation ::= `mhlo.asin` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Melakukan operasi asin elemen demi elemen pada tensor operand
dan menghasilkan tensor result
.
Contoh:
%result = mhlo.asin %operand : tensor<2x2xf32>
Ciri-ciri: CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Antarmuka: InferShapedTypeOpInterface
, InferTypeOpInterface
Operan:
Operan | Keterangan |
---|---|
operand | tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit |
mhlo.async_done
(mhlo::AsyncDoneOp)
Operasi AsyncDone
Operasi ini bersifat pribadi bagi kompiler XLA, jadi belum memiliki spesifikasi.
Secara informal, operasi ini akan memblokir hingga akhir komputasi asinkron. Operasi ini akan mengembalikan hasil akhir komputasi asinkron.
Lihat dokumentasi untuk AsyncStart untuk informasi lebih lanjut.
Antarmuka: InferTypeOpInterface
Operan:
Operan | Keterangan |
---|---|
bundle | async_bundle dengan kombinasi tensor peringkat apa pun dengan tipe float atau bool 4/6/8/16/32/64-bit atau tipe integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau nilai integer terkuantisasi per sumbu atau nilai token atau token stablehlo |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | Bahasa Indonesia: variadic dari tensor peringkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks bertipe 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau nilai integer terkuantisasi per sumbu atau token atau token stablehlo atau tupel bersarang dengan kombinasi apa pun dari tensor peringkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks bertipe 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau memref bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks bertipe 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau tensor peringkat integer per sumbu nilai terkuantisasi atau nilai token |
mhlo.async_start
(mhlo::AsyncStartOp)
Operasi AsyncStart
Operasi ini bersifat pribadi bagi kompiler XLA, jadi belum memiliki spesifikasi.
Secara informal, operasi ini memulai komputasi asinkron.
Ini digunakan ketika terdapat fungsi yang berisi penantian asinkron (seperti DMA) dan komputasi on-thread. Misalnya, suatu fungsi mungkin terdiri dari sebuah komputasi, sebuah DMA, komputasi lain, sebuah DMA kedua, dan sebuah komputasi akhir. Ini akan direpresentasikan sebagai async_start diikuti oleh async_update dan async_done. async_start akan melakukan komputasi pertama on-thread dan kemudian memulai DMA. async_update akan menunggu DMA selesai jika belum selesai, lalu mengeksekusi komputasi kedua dalam fungsi tersebut, dan memulai DMA kedua. Terakhir, async_done akan menunggu DMA terakhir ini, lalu menjalankan komputasi terakhir yang perlu dijalankan on-thread dan mengembalikan hasil komputasi akhir tersebut.
operands
diteruskan langsung ke komputasi. Fungsi called_computation
adalah fungsi yang akan dijalankan secara asinkron. execution_thread
adalah nama utas tempat utas tersebut akan dijalankan. Utas utama disebut "main". Semua utas memiliki nama.
Ini mengembalikan semua status yang dibutuhkan di antara operasi asinkron. Setelah buffer ditetapkan, nilai yang dikembalikan mewakili ruang yang dibutuhkan untuk menyimpan input, hasil, dan scratchpad apa pun yang dibutuhkan atau diedit oleh operasi asinkron.
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
called_computation | ::mlir::FlatSymbolRefAttr | atribut referensi simbol datar |
execution_thread | ::mlir::AtributString | atribut string |
Operan:
Operan | Keterangan |
---|---|
inputs | Bahasa Indonesia: variadic dari tensor peringkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks bertipe 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau nilai integer terkuantisasi per sumbu atau token atau token stablehlo atau tupel bersarang dengan kombinasi apa pun dari tensor peringkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks bertipe 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau memref bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks bertipe 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau tensor peringkat integer per sumbu nilai terkuantisasi atau nilai token |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | async_bundle dengan kombinasi tensor peringkat apa pun dengan tipe float atau bool 4/6/8/16/32/64-bit atau tipe integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau nilai integer terkuantisasi per sumbu atau nilai token atau token stablehlo |
mhlo.async_update
(mhlo::AsyncUpdateOp)
Operasi AsyncUpdate
Operasi ini bersifat pribadi bagi kompiler XLA, jadi belum memiliki spesifikasi.
Secara informal, operasi ini memblokir komputasi asinkron hingga mencapai batas sinkronisasi. Ini mengembalikan bundle
setelah beroperasi di atasnya.
Lihat dokumentasi untuk AsyncStart untuk informasi lebih lanjut.
Antarmuka: InferTypeOpInterface
Operan:
Operan | Keterangan |
---|---|
bundle | async_bundle dengan kombinasi tensor peringkat apa pun dengan tipe float atau bool 4/6/8/16/32/64-bit atau tipe integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau nilai integer terkuantisasi per sumbu atau nilai token atau token stablehlo |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | async_bundle dengan kombinasi tensor peringkat apa pun dengan tipe float atau bool 4/6/8/16/32/64-bit atau tipe integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per tensor atau nilai integer terkuantisasi per sumbu atau nilai token atau token stablehlo |
mhlo.atan2
(mhlo::Atan2Op)
Operasi Atan2
Sintaksis:
operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Melakukan operasi atan2 elemen demi elemen pada tensor lhs
dan rhs
dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2
Contoh:
%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>
Ciri: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | tensor berperingkat tipe float atau kompleks 4/6/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor |
rhs | tensor berperingkat tipe float atau kompleks 4/6/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor berperingkat tipe float atau kompleks 4/6/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor |
mhlo.atanh
(mhlo::AtanhOp)
Operasi Atanh
Sintaksis:
operation ::= `mhlo.atanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Melakukan operasi atanh elemen demi elemen pada tensor operand
dan menghasilkan tensor result
.
Contoh:
%result = mhlo.atanh %operand : tensor<2x2xf32>
Ciri-ciri: CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Antarmuka: InferShapedTypeOpInterface
, InferTypeOpInterface
Operan:
Operan | Keterangan |
---|---|
operand | tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit |
mhlo.batch_norm_grad
(mhlo::BatchNormGradOp)
Operasi BatchNormGrad
Menghitung gradien beberapa masukan BatchNormTrainingOp yang dipropagasi balik dari grad_output
, dan menghasilkan tensor grad_operand
, grad_scale
, dan grad_offset
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad
Contoh:
%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Ciri: AlwaysSpeculatableImplTrait
, InferTensorType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
epsilon | ::mlir::FloatAttr | Atribut float 32-bit |
feature_index | ::mlir::IntegerAttr | Atribut integer tanpa tanda 64-bit yang nilainya bukan negatif |
Operan:
Operan | Keterangan |
---|---|
operand | tensor peringkat nilai float 4/6/8/16/32/64-bit |
scale | Tensor 1D dengan nilai float 4/6/8/16/32/64-bit |
mean | Tensor 1D dengan nilai float 4/6/8/16/32/64-bit |
variance | Tensor 1D dengan nilai float 4/6/8/16/32/64-bit |
grad_output | tensor peringkat nilai float 4/6/8/16/32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
grad_operand | tensor peringkat nilai float 4/6/8/16/32/64-bit |
grad_scale | Tensor 1D dengan nilai float 4/6/8/16/32/64-bit |
grad_offset | Tensor 1D dengan nilai float 4/6/8/16/32/64-bit |
mhlo.batch_norm_inference
(mhlo::BatchNormInferenceOp)
Operasi BatchNormInference
Menormalkan tensor operand
di semua dimensi kecuali dimensi feature_index
dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference
Contoh:
%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>
Ciri: AlwaysSpeculatableImplTrait
, InferTensorType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
epsilon | ::mlir::FloatAttr | Atribut float 32-bit |
feature_index | ::mlir::IntegerAttr | Atribut integer tanpa tanda 64-bit yang nilainya bukan negatif |
Operan:
Operan | Keterangan |
---|---|
operand | tensor peringkat nilai float 4/6/8/16/32/64-bit |
scale | Tensor 1D dengan nilai float 4/6/8/16/32/64-bit |
offset | Tensor 1D dengan nilai float 4/6/8/16/32/64-bit |
mean | Tensor 1D dengan nilai float 4/6/8/16/32/64-bit |
variance | Tensor 1D dengan nilai float 4/6/8/16/32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor peringkat nilai float 4/6/8/16/32/64-bit |
mhlo.batch_norm_training
(mhlo::BatchNormTrainingOp)
Operasi BatchNormTraining
Menghitung rata-rata dan varians di seluruh dimensi batch dan spasial dan menormalkan tensor operand
, untuk setiap fitur dalam dimensi feature_index
dan menghasilkan output
, tensor batch_mean
dan batch_var
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training
Contoh:
%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Ciri: AlwaysSpeculatableImplTrait
, InferTensorType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
epsilon | ::mlir::FloatAttr | Atribut float 32-bit |
feature_index | ::mlir::IntegerAttr | Atribut integer tanpa tanda 64-bit yang nilainya bukan negatif |
Operan:
Operan | Keterangan |
---|---|
operand | tensor peringkat nilai float 4/6/8/16/32/64-bit |
scale | Tensor 1D dengan nilai float 4/6/8/16/32/64-bit |
offset | Tensor 1D dengan nilai float 4/6/8/16/32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor peringkat nilai float 4/6/8/16/32/64-bit |
batch_mean | Tensor 1D dengan nilai float 4/6/8/16/32/64-bit |
batch_var | Tensor 1D dengan nilai float 4/6/8/16/32/64-bit |
mhlo.bitcast
(mhlo::BitcastOp)
Operasi Bitcast
Sintaksis:
operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)
Operasi ini bersifat pribadi bagi kompiler XLA, jadi belum memiliki spesifikasi.
Secara informal, operasi ini mengubah bentuk masukan dengan cara tidak mengubah susunan fisik elemen.
Operasi ini memerlukan informasi tata letak untuk memahami "penataan fisik elemen", dan dukungan tata letak di MHLO saat ini masih dalam tahap pengerjaan.
Contoh:
%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
mhlo.bitcast_convert
(mhlo::BitcastConvertOp)
Operasi BitcastConvert
Sintaksis:
operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)
Melakukan operasi bitcast pada tensor operand
dan menghasilkan tensor result
di mana bit dari seluruh tensor operand
ditafsirkan ulang menggunakan tipe tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert
Contoh:
%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
mhlo.broadcast
(mhlo::BroadcastOp)
Operasi siaran
Operasi ini sedang dalam perjalanan keluar dari StableHLO, jadi tidak termasuk dalam spesifikasi: https://github.com/openxla/stablehlo/issues/3
Secara informal, operasi ini melakukan hal yang sama seperti Siaran XLA: https://www.tensorflow.org/xla/operation_semantics#broadcast
Contoh:
%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>
Ciri: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsAndResultElementType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
broadcast_sizes | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
mhlo.broadcast_in_dim
(mhlo::BroadcastInDimOp)
Operasi BroadcastInDim
Memperluas dimensi dan/atau peringkat tensor input dengan menduplikasi data dalam tensor operand
dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim
Contoh:
%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>
Ciri: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | tensor berdimensi statis atau berbatas tunggal dengan tipe float atau bool 4/6/8/16/32/64-bit atau tipe integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
mhlo.case
(mhlo::CaseOp)
Operasi kasus
Menghasilkan keluaran dari pelaksanaan tepat satu function
dari branches
tergantung pada nilai index
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case
Contoh:
%result0, %result1 = "mhlo.case"(%index) ({
mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)
Ciri-ciri: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Antarmuka: InferTypeOpInterface
Operan:
Operan | Keterangan |
---|---|
index | tensor nilai integer tanpa tanda 32-bit |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | variadic dari tensor peringkat bertipe float 4/6/8/16/32/64-bit atau bool atau integer 2/4/8/16/32/64-bit atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau tensor peringkat bertipe integer terkuantisasi per-sumbu atau token |
mhlo.cbrt
(mhlo::CbrtOp)
Operasi Cbrt
Sintaksis:
operation ::= `mhlo.cbrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Melakukan operasi akar kubik per elemen pada tensor operand
dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt
Contoh:
%result = mhlo.cbrt %operand : tensor<4xf32>
Ciri: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | Keakuratan yang diminta untuk operasi unary. |
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat tipe float atau kompleks 4/6/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor berperingkat tipe float atau kompleks 4/6/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor |
mhlo.ceil
(mhlo::CeilOp)
Operasi langit-langit
Sintaksis:
operation ::= `mhlo.ceil` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Melakukan pemotongan elemen demi elemen pada tensor operand
dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceil
Contoh:
%result = mhlo.ceil %operand : tensor<5xf32>
Ciri: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
operand | tensor peringkat dengan nilai float 4/6/8/16/32/64-bit atau nilai terkuantisasi integer per-tensor |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor peringkat dengan nilai float 4/6/8/16/32/64-bit atau nilai terkuantisasi integer per-tensor |
mhlo.cholesky
(mhlo::CholeskyOp)
Operasi koleski
Menghitung dekomposisi Cholesky pada sekumpulan matriks.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky
Contoh:
%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>
Ciri: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsAndResultElementType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
lower | ::mlir::BoolAttr | atribut bool |
Operan:
Operan | Keterangan |
---|---|
a | tensor peringkat tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | tensor peringkat tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit |
mhlo.clamp
(mhlo::ClampOp)
Operasi penjepit
Sintaksis:
operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
`:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))
Menjepit setiap elemen tensor operand
antara nilai minimum dan maksimum dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp
Contoh:
%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>
Ciri-ciri: AlwaysSpeculatableImplTrait
, HLO_BroadcastingElementwise
, InferTensorType
, SameOperandsAndResultElementType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
min | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
operand | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
max | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
mhlo.collective_broadcast
(mhlo::CollectiveBroadcastOp)
Operasi Siaran Kolektif
Dalam setiap grup proses di kisi proses, kirimkan nilai tensor operand
dari proses sumber ke proses target dan hasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast
Contoh:
%result = "mhlo.collective_broadcast"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>
Ciri-ciri: CompatibleOperandsAndResultType
Antarmuka: InferShapedTypeOpInterface
, InferTypeOpInterface
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dua bilangan bulat 64-bit 'handle' dan 'type' |
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
mhlo.collective_permute
(mhlo::CollectivePermuteOp)
Operasi CollectivePermute
Dalam setiap grup proses di kisi proses, mengirimkan nilai tensor operand
dari proses sumber ke proses target dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute
Contoh:
%result = "mhlo.collective_permute"(%operand) {
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>
Ciri: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
source_target_pairs | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dua bilangan bulat 64-bit 'handle' dan 'type' |
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
mhlo.compare
(mhlo::BandingkanOp)
Bandingkan operasi
Sintaksis:
operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
attr-dict `:` functional-type(operands, results)
Melakukan perbandingan elemen demi elemen dari tensor lhs
dan rhs
menurut comparison_direction
dan compare_type
, dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compare
Contoh:
%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>
Ciri: AlwaysSpeculatableImplTrait
, Elementwise
, InferTensorType
, SameOperandsAndResultShape
, SameOperandsElementType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
comparison_direction | ::mlir::mhlo::ComparisonDirectionAttr | Operasi perbandingan mana yang harus dilakukan. |
compare_type | ::mlir::mhlo::ComparisonTypeAttr | Jenis perbandingan mana yang akan digunakan. |
Operan:
Operan | Keterangan |
---|---|
lhs | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
rhs | tensor berperingkat bertipe float atau bool 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per tensor atau nilai terkuantisasi integer per sumbu |
Hasil:
Hasil | Keterangan |
---|---|
"tanpa nama" | tensor peringkat nilai bool |
mhlo.complex
(mhlo::ComplexOp)
Operasi yang kompleks
Sintaksis:
operation ::= `mhlo.complex` operands attr-dict
`:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))
Melakukan konversi elemen demi elemen ke nilai kompleks dari pasangan nilai riil dan imajiner, lhs
dan rhs
, dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex
Contoh:
%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>
Ciri: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
, SameOperandsElementType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | tensor peringkat nilai float 32/64-bit |
rhs | tensor peringkat nilai float 32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor peringkat tipe kompleks dengan nilai elemen float 32/64-bit |
mhlo.composite
(mhlo::CompositeOp)
Operasi komposit
Sintaksis:
operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)
Mengenkapsulasi operasi yang terdiri (terdiri) dari operasi StableHLO lainnya, mengambil inputs
dan composite_attributes
serta menghasilkan results
. Semantik operasi diimplementasikan oleh atribut decomposition
. Operasi composite
dapat diganti dengan dekomposisinya tanpa mengubah semantik program. Jika memasukkan dekomposisi tidak memberikan semantik operasi yang sama, lebih baik menggunakan custom_call
.
Bidang version
(defaultnya adalah 0
) digunakan untuk menunjukkan kapan semantik gabungan berubah.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composite
Contoh:
%results = mhlo.composite "my.op" %arg0, %arg1 {
decomposition = @my_op,
composite_attributes = { my_attribute = "my_value" },
version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>
Antarmuka: SymbolUserOpInterface
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
name | ::mlir::StringAttr | atribut string |
composite_attributes | ::mlir::DictionaryAttr | kamus nilai atribut bernama |
decomposition | ::mlir::FlatSymbolRefAttr | atribut referensi simbol datar |
version | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
Operan:
Operan | Keterangan |
---|---|
inputs | variadik tensor peringkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor atau nilai terkuantisasi integer per-sumbu atau token atau tupel bersarang dengan kombinasi tensor peringkat 4/6/8/16/32/64-bit float atau bool atau bilangan bulat 2/4/8/16/32/64-bit atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor atau memref 4/6/8/16/32/64-bit float atau bool atau bilangan bulat 2/4/8/16/32/64-bit atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor atau tensor peringkat nilai terkuantisasi bilangan bulat per sumbu atau nilai token |
Hasil:
Hasil | Keterangan |
---|---|
«tidak disebutkan namanya» | variadik tensor peringkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor atau nilai terkuantisasi integer per-sumbu atau token atau tupel bersarang dengan kombinasi tensor peringkat 4/6/8/16/32/64-bit float atau bool atau bilangan bulat 2/4/8/16/32/64-bit atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor atau memref 4/6/8/16/32/64-bit float atau bool atau bilangan bulat 2/4/8/16/32/64-bit atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor atau tensor peringkat nilai terkuantisasi bilangan bulat per sumbu atau nilai token |
mhlo.concatenate
(mhlo::ConcatenateOp)
Operasi penggabungan
Menggabungkan sejumlah variadik tensor dalam inputs
sepanjang dimensi dimension
dalam urutan yang sama dengan argumen yang diberikan dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatenate
Contoh:
%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>
Ciri-ciri: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
dimension | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 64-bit yang nilainya non-negatif |
Operan:
Operan | Keterangan |
---|---|
val | variadik tensor peringkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
Hasil:
Hasil | Keterangan |
---|---|
«tidak disebutkan namanya» | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.constant
(mhlo::ConstantOp)
Operasi konstan
Menghasilkan tensor output
dari value
konstan.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant
Contoh:
%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>
Ciri-ciri: AlwaysSpeculatableImplTrait
, ConstantLike
Antarmuka: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
value | ::mlir::ElementsAttr | atribut vektor/tensor konstan |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor berbentuk statis dengan 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor atau nilai terkuantisasi bilangan bulat per sumbu |
mhlo.convert
(mhlo::ConvertOp)
Konversi operasi
Sintaksis:
operation ::= `mhlo.convert` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Melakukan konversi berdasarkan elemen dari satu jenis elemen ke jenis elemen lainnya pada tensor operand
dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert
Contoh:
%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>
Ciri-ciri: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.convolution
(mhlo::ConvolutionOp)
Operasi konvolusi
Sintaksis:
operation ::= `mhlo.convolution` `(`operands`)`
`dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
`window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
$lhs_dilation, $rhs_dilation,
$window_reversal) `}`
attr-dict `:` functional-type(operands, results)
Menghitung perkalian titik antara jendela lhs
dan irisan rhs
dan menghasilkan result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Contoh:
%result = "mhlo.convolution"(%lhs, %rhs) {
window_strides = dense<4> : tensor<2xi64>,
padding = dense<0> : tensor<2x2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>
Ciri-ciri: Sifat AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
padding | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
lhs_dilation | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
rhs_dilation | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
window_reversal | ::mlir::DenseElementsAttr | atribut vektor/tensor boolean konstan |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Struktur informasi dimensi untuk konv op |
feature_group_count | ::mlir::IntegerAttr | Atribut integer tak bertanda 64-bit yang nilainya positif |
batch_group_count | ::mlir::IntegerAttr | Atribut integer tak bertanda 64-bit yang nilainya positif |
precision_config | ::mlir::ArrayAttr | Atribut Konfigurasi Presisi |
Operan:
Operan | Keterangan |
---|---|
lhs | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
rhs | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
Hasil:
Hasil | Keterangan |
---|---|
«tidak disebutkan namanya» | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.copy
(mhlo::CopyOp)
Operasi penyalinan
Sintaksis:
operation ::= `mhlo.copy` operands attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Operasi ini bersifat pribadi untuk kompiler XLA, sehingga belum memiliki spesifikasi.
Secara informal, operasi ini merupakan salinan operand
. Bergantung pada metadata yang dilampirkan pada operasi, perilakunya bisa sangat berbeda dari larangan operasi.
Contoh:
%0 = mhlo.copy %arg0 : tensor<f32>
Ciri-ciri: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
cross_program_prefetch_index | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
Operan:
Operan | Keterangan |
---|---|
operand | tensor peringkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu atau token atau tupel bersarang dengan kombinasi tensor peringkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau memref 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau tensor peringkat nilai terkuantisasi bilangan bulat per sumbu atau nilai token |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor peringkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu atau token atau tupel bersarang dengan kombinasi tensor peringkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau memref 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau tensor peringkat nilai terkuantisasi bilangan bulat per sumbu atau nilai token |
mhlo.cosh
(mhlo::CoshOp)
Operasi cosh
Sintaksis:
operation ::= `mhlo.cosh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Melakukan operasi cosh berdasarkan elemen pada tensor operand
dan menghasilkan tensor result
.
Contoh:
%result = mhlo.cosh %operand : tensor<2x2xf32>
Sifat: CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Antarmuka: InferShapedTypeOpInterface
, InferTypeOpInterface
Operan:
Operan | Keterangan |
---|---|
operand | tensor float 4/6/8/16/32/64-bit atau tipe kompleks dengan nilai elemen float 32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor float 4/6/8/16/32/64-bit atau tipe kompleks dengan nilai elemen float 32/64-bit |
mhlo.cosine
(mhlo::CosineOp)
Operasi kosinus
Sintaksis:
operation ::= `mhlo.cosine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Melakukan operasi kosinus berdasarkan elemen pada tensor operand
dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine
Contoh:
%result = mhlo.cosine %operand : tensor<2xf32>
Sifat: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | Akurasi yang diminta untuk operasi unary. |
Operan:
Operan | Keterangan |
---|---|
operand | tensor peringkat float 4/6/8/16/32/64-bit atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor peringkat float 4/6/8/16/32/64-bit atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor |
mhlo.count_leading_zeros
(mhlo::ClzOp)
Operasi Klz
Sintaksis:
operation ::= `mhlo.count_leading_zeros` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Melakukan penghitungan berdasarkan elemen jumlah bit nol di depan dalam tensor operand
dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros
Contoh:
%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>
Sifat: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
operand | tensor peringkat nilai integer 2/4/8/16/32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor peringkat nilai integer 2/4/8/16/32/64-bit |
mhlo.create_token
(mhlo::CreateTokenOp)
Operasi BuatToken
Sintaksis:
operation ::= `mhlo.create_token` attr-dict `:` type(results)
Operasi ini sedang dalam proses keluar dari StableHLO, sehingga tidak disertakan dalam spesifikasi: https://github.com/openxla/stablehlo/issues/3
Secara informal, operasi ini melakukan hal yang sama seperti AfterAllOp dengan 0 input: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Contoh:
%output = mhlo.create_token : !mhlo.token
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Hasil:
Hasil | Keterangan |
---|---|
output | token |
mhlo.cross-replica-sum
(mhlo::CrossReplicaSumOp)
Operasi CrossReplicaSum
Operasi ini sedang dalam proses keluar dari StableHLO, sehingga tidak disertakan dalam spesifikasi: https://github.com/openxla/stablehlo/issues/3
Secara informal, operasi ini melakukan hal yang sama seperti AllReduceOp dengan channel_id = 0
, use_global_device_ids = false
dan penambahan penerapan computation
: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Contoh:
%result = "mhlo.cross-replica-sum"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>
Ciri-ciri: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
Hasil:
Hasil | Keterangan |
---|---|
«tidak disebutkan namanya» | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.custom_call
(mhlo::CustomCallOp)
Operasi Panggilan Khusus
Sintaksis:
operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
attr-dict `:` functional-type(operands, results)
Meringkas operasi yang ditentukan implementasi call_target_name
yang mengambil inputs
dan called_computations
serta menghasilkan results
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call
Contoh:
%results = "mhlo.custom_call"(%input0) {
call_target_name = "foo",
has_side_effect = false,
backend_config = "bar",
api_version = 1 : i32,
called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>
A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.
If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.
Depending on the API version there are two ways to pass extra bits of static
information to the external function:
1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
dictionary attribute, that will be encoded according to the custom call
calling convention and passed to the external function as the attributes
argument. External code is expected to use declarative bindings (see
`xla/runtime/custom_call.h`) to decode them at run time. These custom
calls are only supported if XLA uses XLA runtime.
2. For previous API versions it is the user responsibility to encode extra
bits of static information as a string `backend_config` attribute, and
decode it at run time.
Antarmuka: MemoryEffectOpInterface
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
call_target_name | ::mlir::StringAttr | atribut string |
has_side_effect | ::mlir::BoolAttr | atribut bool |
backend_config | ::mlir::Atribut | atribut string atau kamus nilai atribut bernama |
api_version | ::mlir::mhlo::CustomCallApiVersionAttr | Versi API panggilan khusus |
called_computations | ::mlir::ArrayAttr | atribut array ref simbol datar |
custom_call_schedule | ::mlir::mhlo::CustomCallScheduleAttr | Menentukan jadwal yang diinginkan untuk panggilan khusus. |
operand_layouts | ::mlir::ArrayAttr | Array atribut tata letak (tensor 1D tipe indeks). |
result_layouts | ::mlir::ArrayAttr | Array atribut tata letak (tensor 1D tipe indeks). |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing atribut untuk output dan operan CustomCall |
Operan:
Operan | Keterangan |
---|---|
inputs | variadik tensor 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu atau memref 4/6/8/16/32/64-bit float atau bool atau Tipe bilangan bulat 2/4/8/16/32/64-bit atau kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor atau token atau tupel bersarang dengan kombinasi tensor 4/6/8/16/32/64-bit float atau bool atau bilangan bulat 2/4/8/16/32/64-bit atau tipe kompleks dengan elemen float 32/64-bit atau bilangan bulat per-tensor nilai terkuantisasi bilangan bulat atau bilangan bulat per sumbu atau memref 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai token |
Hasil:
Hasil | Keterangan |
---|---|
«tidak disebutkan namanya» | variadik tensor 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu atau memref 4/6/8/16/32/64-bit float atau bool atau Tipe bilangan bulat 2/4/8/16/32/64-bit atau kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor atau token atau tupel bersarang dengan kombinasi tensor 4/6/8/16/32/64-bit float atau bool atau bilangan bulat 2/4/8/16/32/64-bit atau tipe kompleks dengan elemen float 32/64-bit atau bilangan bulat per-tensor nilai terkuantisasi bilangan bulat atau bilangan bulat per sumbu atau memref 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai token |
mhlo.divide
(mhlo::DivOp)
Operasi div
Sintaksis:
operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Melakukan pembagian berdasarkan elemen dari dividen lhs
dan pembagi rhs
tensor dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide
Contoh:
%result = mhlo.divide %lhs, %rhs : tensor<4xf32>
Sifat: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | tensor peringkat bilangan bulat 2/4/8/16/32/64-bit atau tipe float atau kompleks 4/6/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor atau nilai terkuantisasi bilangan bulat per sumbu |
rhs | tensor peringkat bilangan bulat 2/4/8/16/32/64-bit atau tipe float atau kompleks 4/6/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor atau nilai terkuantisasi bilangan bulat per sumbu |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor peringkat bilangan bulat 2/4/8/16/32/64-bit atau tipe float atau kompleks 4/6/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor atau nilai terkuantisasi bilangan bulat per sumbu |
mhlo.domain
(mhlo::DomainOp)
Operasi domain
Operasi ini bersifat pribadi untuk kompiler XLA, sehingga belum memiliki spesifikasi.
Secara informal, operasi ini digunakan untuk mengelompokkan instruksi dengan properti DomainMetadata yang sama. ShardingMetadata adalah kasus penggunaan utama saat ini untuk mengelompokkan instruksi pada perangkat yang sama. Instruksi domain memberikan dua manfaat utama:
- Cegah instruksi pengoptimalan di seluruh domain secara tidak sengaja.
- Secara otomatis menetapkan metadata dari instruksi yang dibuat di domain. Tanpa instruksi domain, setiap jalur pengoptimalan HLO harus memeriksa dan menyebarkan metadata, yang akan mudah terlewatkan dan juga menambah kerumitan pada kompiler. Karena instruksi domain menghubungkan dua domain berbeda, setiap instruksi domain dikaitkan dengan dua DomainMetadata -- satu di sisi operan dan satu lagi di sisi pengguna domain.
Ciri-ciri: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
kind | ::mlir::mhlo::DomainKindAttr | Jenis metadata domain yang dilampirkan ke domain HLO. |
entry_metadata | ::mlir::StringAttr | atribut string |
exit_metadata | ::mlir::StringAttr | atribut string |
Operan:
Operan | Keterangan |
---|---|
operand | tensor peringkat dari 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor atau tensor peringkat dari nilai atau token terkuantisasi bilangan bulat per-sumbu |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor peringkat dari 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi bilangan bulat per-tensor atau tensor peringkat dari nilai atau token terkuantisasi bilangan bulat per-sumbu |
mhlo.dot
(mhlo::DotOp)
Operasi titik
Operasi ini sedang dalam proses keluar dari StableHLO, sehingga tidak disertakan dalam spesifikasi: https://github.com/openxla/stablehlo/issues/3
Secara informal, operasi ini melakukan hal yang sama seperti Dot XLA: https://www.tensorflow.org/xla/operation_semantics#dot
Contoh:
%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
precision_config | ::mlir::ArrayAttr | Atribut Konfigurasi Presisi |
Operan:
Operan | Keterangan |
---|---|
lhs | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
rhs | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
Hasil:
Hasil | Keterangan |
---|---|
«tidak disebutkan namanya» | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.dot_general
(mhlo::DotGeneralOp)
Operasi DotGeneral
Menghitung perkalian titik antara irisan lhs
dan irisan rhs
dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general
Contoh:
%result = "mhlo.dot_general"(%lhs, %rhs) {
dot_dimension_numbers = #mhlo.dot<
lhs_batching_dimensions = [0],
rhs_batching_dimensions = [0],
lhs_contracting_dimensions = [2],
rhs_contracting_dimensions = [1]
>,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Atribut yang memodelkan informasi dimensi untuk titik. |
precision_config | ::mlir::ArrayAttr | Atribut Konfigurasi Presisi |
algorithm | ::mlir::mhlo::DotAlgorithmAttr | Atribut yang memodelkan batasan algoritme yang akan digunakan untuk menghitung titik. |
Operan:
Operan | Keterangan |
---|---|
lhs | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
rhs | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
Hasil:
Hasil | Keterangan |
---|---|
«tidak disebutkan namanya» | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.dynamic_broadcast_in_dim
(mhlo::DynamicBroadcastInDimOp)
Operasi DynamicBroadcastInDim
Operasi ini secara fungsional identik dengan operasi Broadcast_in_dim , tetapi bentuk hasil ditentukan secara dinamis melalui output_dimensions
.
Ia juga menerima atribut opsional untuk mengekspresikan pengetahuan statis tentang perilaku perluasan dimensi. Jika tidak ditentukan, semua dimensi diasumsikan kemungkinan mengembang. Himpunan dimensi yang diketahui mengembang dan himpunan dimensi yang diketahui tidak mengembang harus saling lepas dan harus merupakan bagian dari dimensi operan.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim
Contoh:
%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
broadcast_dimensions = array<i64: 2, 1>,
known_expanding_dimensions = array<i64: 0>,
known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
known_expanding_dimensions | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
known_nonexpanding_dimensions | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
output_dimensions | Tensor indeks 1D atau nilai integer 2/4/8/16/32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
«tidak disebutkan namanya» | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.dynamic_conv
(mhlo::DynamicConvOp)
Operasi DynamicConv
Operasi ini masih dalam proses, sehingga belum disertakan dalam spesifikasi: https://github.com/openxla/stablehlo/issues/8
Secara informal, operasi ini melakukan hal yang sama seperti ConvolutionOp kecuali padding
ditentukan secara dinamis melalui d_padding
: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Contoh:
%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
window_strides = dense<4> : tensor<2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
padding | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
lhs_dilation | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
rhs_dilation | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
window_reversal | ::mlir::DenseElementsAttr | atribut vektor/tensor boolean konstan |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Struktur informasi dimensi untuk konv op |
feature_group_count | ::mlir::IntegerAttr | Atribut integer tak bertanda 64-bit yang nilainya positif |
batch_group_count | ::mlir::IntegerAttr | Atribut integer tak bertanda 64-bit yang nilainya positif |
precision_config | ::mlir::ArrayAttr | Atribut Konfigurasi Presisi |
Operan:
Operan | Keterangan |
---|---|
lhs | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
rhs | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
d_padding | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
Hasil:
Hasil | Keterangan |
---|---|
«tidak disebutkan namanya» | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.dynamic_gather
(mhlo::DynamicGatherOp)
Operasi DynamicGather
Operasi ini masih dalam proses, sehingga belum disertakan dalam spesifikasi: https://github.com/openxla/stablehlo/issues/8
Secara informal, operasi ini melakukan hal yang sama seperti GatherOp kecuali bahwa slice_sizes
ditentukan secara dinamis: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Contoh:
%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
dimension_numbers = #mhlo.gather<
offset_dims = [2, 3],
collapsed_slice_dims = [0],
start_index_map = [0, 2],
index_vector_dim = 2>,
indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>
Sifat: AlwaysSpeculatableImplTrait
, InferTensorType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Atribut yang memodelkan informasi dimensi untuk dikumpulkan |
indices_are_sorted | ::mlir::BoolAttr | atribut bool |
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
start_indices | tensor peringkat nilai integer 2/4/8/16/32/64-bit |
slice_sizes | tensor bilangan bulat 1 dimensi berbentuk statis dengan nilai bilangan bulat 2/4/8/16/32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
«tidak disebutkan namanya» | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.dynamic_iota
(mhlo::DynamicIotaOp)
Operasi DynamicIota
Operasi ini secara fungsional identik dengan operasi iota , tetapi bentuk hasil ditentukan secara dinamis melalui output_shape
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota
Contoh:
%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
iota_dimension | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 64-bit yang nilainya non-negatif |
Operan:
Operan | Keterangan |
---|---|
output_shape | Tensor indeks 1D atau nilai integer 2/4/8/16/32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.dynamic_pad
(mhlo::DynamicPadOp)
Operasi DynamicPad
Sintaksis:
operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)
Mengisi operand
secara dinamis, dengan jumlah padding yang ditambahkan pada low-end/high-end/interior dilewatkan melalui tensor input.
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
padding_value | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
edge_padding_low | Tensor indeks 1D atau nilai integer 2/4/8/16/32/64-bit |
edge_padding_high | Tensor indeks 1D atau nilai integer 2/4/8/16/32/64-bit |
interior_padding | Tensor indeks 1D atau nilai integer 2/4/8/16/32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.dynamic_reshape
(mhlo::DynamicReshapeOp)
Operasi DynamicReshape
Sintaksis:
operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)
Operasi ini secara fungsional identik dengan operasi pembentukan ulang , tetapi bentuk hasil ditentukan secara dinamis melalui output_shape
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape
Contoh:
%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>
Ciri-ciri: Sifat AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
operand | tensor 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
output_shape | Tensor indeks 1D atau nilai integer 2/4/8/16/32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.dynamic_slice
(mhlo::DynamicSliceOp)
Operasi DynamicSlice
Mengekstrak sepotong operand
menggunakan indeks awal yang dihitung secara dinamis dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice
Contoh:
%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
: (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>
Sifat: AlwaysSpeculatableImplTrait
, InferTensorType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
slice_sizes | ::mlir::DenseIntElementsAttr | Atribut elemen integer tanpa tanda 64-bit |
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
start_indices | variadik tensor 0D dengan nilai integer 2/4/8/16/32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.dynamic_update_slice
(mhlo::DynamicUpdateSliceOp)
Operasi DynamicUpdateSlice
Sintaksis:
operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)
Menghasilkan tensor result
yang sama dengan tensor operand
kecuali potongan yang dimulai dari start_indices
diperbarui dengan nilai dalam update
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice
Contoh:
%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
: (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>
Sifat: AlwaysSpeculatableImplTrait
, InferTensorType
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
operand | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
update | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
start_indices | variadik tensor 0D dengan nilai integer 2/4/8/16/32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.einsum
(mhlo::EinsumOp)
Operasi Einsum
Operasi ini sedang dalam proses keluar dari StableHLO, sehingga tidak disertakan dalam spesifikasi: https://github.com/openxla/stablehlo/issues/3
Secara informal, operasi ini melakukan hal yang sama seperti einsum TF: https://www.tensorflow.org/api_docs/python/tf/einsum
Contoh:
%result = "mhlo.einsum"(%lhs, %rhs) {
einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
einsum_config | ::mlir::StringAttr | atribut string |
Operan:
Operan | Keterangan |
---|---|
lhs | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
rhs | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
Hasil:
Hasil | Keterangan |
---|---|
«tidak disebutkan namanya» | tensor berperingkat 4/6/8/16/32/64-bit float atau bool atau 2/4/8/16/32/64-bit integer atau tipe kompleks dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau nilai terkuantisasi integer per-sumbu |
mhlo.erf
(mhlo::ErfOp)
Operasi Erf
Sintaksis:
operation ::= `mhlo.erf` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Melakukan operasi erf berdasarkan elemen pada tensor operand
dan menghasilkan tensor result
.
Contoh:
%result = mhlo.erf %operand : tensor<2x2xf32>
Sifat: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
operand | tensor peringkat nilai float 4/6/8/16/32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor peringkat nilai float 4/6/8/16/32/64-bit |
mhlo.exponential
(mhlo::ExpOp)
Operasi exp
Sintaksis:
operation ::= `mhlo.exponential` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Melakukan operasi eksponensial berdasarkan elemen pada tensor operand
dan menghasilkan tensor result
.
Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential
Contoh:
%result = mhlo.exponential %operand : tensor<2x2xf64>
Sifat: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.exponential_minus_one
(mhlo::Expm1Op)
Expm1 operation
Sintaksis:
operation ::= `mhlo.exponential_minus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential minus one operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one
Contoh:
%result = mhlo.exponential_minus_one %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.fft
(mhlo::FftOp)
Fft operation
Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft
Contoh:
%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
fft_type | ::mlir::mhlo::FftTypeAttr | XLA fast fourier transform type. |
fft_length | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.floor
(mhlo::FloorOp)
Floor operation
Sintaksis:
operation ::= `mhlo.floor` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise floor of operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor
Contoh:
%result = mhlo.floor %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values |
mhlo.fusion
(mhlo::FusionOp)
Fusion operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
fusion_kind | ::mlir::mhlo::FusionKindAttr | fusion kind |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of Fusion |
Operands:
Operan | Keterangan |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Hasil:
Hasil | Keterangan |
---|---|
results | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.gather
(mhlo::GatherOp)
Gather operation
Gathers slices from operand
tensor from offsets specified in start_indices
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Contoh:
%result = "mhlo.gather"(%operand, %start_indices) {
dimension_numbers = #stablehlo.gather<
offset_dims = [3, 4],
collapsed_slice_dims = [1],
operand_batching_dims = [0],
start_indices_batching_dims = [1],
start_index_map = [2, 1],
index_vector_dim = 3>,
slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit integer values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.get_dimension_size
(mhlo::GetDimensionSizeOp)
GetDimensionSize operation
Produces the size of the given dimension
of the operand
.
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size
Contoh:
%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | tensor of 32-bit signless integer values |
mhlo.get_tuple_element
(mhlo::GetTupleElementOp)
GetTupleElement operation
Sintaksis:
operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)
Extracts element at index
position of the operand
tuple and produces a result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element
Contoh:
%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
index | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
Operan | Keterangan |
---|---|
operand | nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.if
(mhlo::IfOp)
If operation
Produces the output from executing exactly one branch from true_branch
or false_branch
depending on the value of pred
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if
Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor
Traits: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferTypeOpInterface
Operands:
Operan | Keterangan |
---|---|
pred | ranked tensor of bool values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.imag
(mhlo::ImagOp)
Imag operation
Sintaksis:
operation ::= `mhlo.imag` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the imaginary part, element-wise, from the operand
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag
Contoh:
%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.infeed
(mhlo::InfeedOp)
Infeed operation
Reads data from the infeed and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed
Contoh:
%results:2 = "mhlo.infeed"(%token) {
infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
infeed_config | ::mlir::StringAttr | string attribute |
layout | ::mlir::ArrayAttr | array attribute |
Operands:
Operan | Keterangan |
---|---|
token | token |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token |
mhlo.iota
(mhlo::IotaOp)
Iota operation
Fills an output
tensor with values in increasing order starting from zero along the iota_dimension
dimension.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota
Contoh:
%output = mhlo.iota dim = 0 : tensor<4x5xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Hasil:
Hasil | Keterangan |
---|---|
output | statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.is_finite
(mhlo::IsFiniteOp)
IsFinite operation
Sintaksis:
operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)
Performs element-wise check whether the value in x
is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite
Contoh:
%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
x | ranked tensor of 4/6/8/16/32/64-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
y | ranked tensor of bool values |
mhlo.log
(mhlo::LogOp)
Log operation
Sintaksis:
operation ::= `mhlo.log` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log
Contoh:
%result = mhlo.log %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.log_plus_one
(mhlo::Log1pOp)
Log1p operation
Sintaksis:
operation ::= `mhlo.log_plus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm plus one operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one
Contoh:
%result = mhlo.log_plus_one %operand : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.logistic
(mhlo::LogisticOp)
Logistic operation
Sintaksis:
operation ::= `mhlo.logistic` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logistic operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic
Contoh:
%result = mhlo.logistic %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.map
(mhlo::MapOp)
Map operation
Applies a map function computation
to inputs
along the dimensions
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map
Contoh:
%result = "mhlo.map"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameOperandsAndResultShape
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operan | Keterangan |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.maximum
(mhlo::MaxOp)
Max operation
Sintaksis:
operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise max operation on tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum
Contoh:
%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.minimum
(mhlo::MinOp)
Min operation
Sintaksis:
operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise min operation on tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum
Contoh:
%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.minimum_broadcast_shapes
(mhlo::MinimumBroadcastShapesOp)
Minimizes the rank of two or more shapes to be broadcasted
Sintaksis:
operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)
Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i
corresponds to output i
.
The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.
The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.
Here is an example with two input shapes:
mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
[1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]
The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
shapes | variadic of 1D tensor of index values |
Hasil:
Hasil | Keterangan |
---|---|
results | variadic of 1D tensor of index values |
mhlo.multiply
(mhlo::MulOp)
Mul operation
Sintaksis:
operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise product of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply
Contoh:
%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.negate
(mhlo::NegOp)
Neg operation
Sintaksis:
operation ::= `mhlo.negate` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise negation of operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate
Contoh:
%result = mhlo.negate %operand : tensor<2x3xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.not
(mhlo::NotOp)
Not operation
Sintaksis:
operation ::= `mhlo.not` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise NOT of tensor operand
of type integer and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not
Contoh:
%result = mhlo.not %operand : tensor<5x3x1xi1>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
mhlo.optimization_barrier
(mhlo::OptimizationBarrierOp)
OptimizationBarrier operation
Sintaksis:
operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?
Ensures that the operations that produce the operand
are executed before any operations that depend on the result
and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result
= operand
.
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier
Contoh:
%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>
Traits: AlwaysSpeculatableImplTrait
, HLO_PairwiseSameOperandAndResultType
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Hasil:
Hasil | Keterangan |
---|---|
result | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.or
(mhlo::OrOp)
Or operation
Sintaksis:
operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise OR of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or
Contoh:
%result = mhlo.or %lhs, %rhs : tensor<2xi1>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
lhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.outfeed
(mhlo::OutfeedOp)
Outfeed operation
Writes inputs
to the outfeed and produces a result
token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed
Contoh:
%result = "mhlo.outfeed"(%input0, %token) {
outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
outfeed_config | ::mlir::StringAttr | string attribute |
Operands:
Operan | Keterangan |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
token | token |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | token |
mhlo.pad
(mhlo::PadOp)
Pad operation
Expands operand
by padding around the tensor as well as between the elements of the tensor with the given padding_value
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad
Contoh:
%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
: (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
edge_padding_low | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
edge_padding_high | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
interior_padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
padding_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.partition_id
(mhlo::PartitionIdOp)
PartitionId operation
Sintaksis:
operation ::= `mhlo.partition_id` attr-dict `:` type(results)
Produces partition_id
of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id
Contoh:
%result = mhlo.partition_id : tensor<ui32>
Interfaces: InferTypeOpInterface
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 32-bit unsigned integer values |
mhlo.popcnt
(mhlo::PopulationCountOp)
PopulationCount operation
Sintaksis:
operation ::= `mhlo.popcnt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of bits set in the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt
Contoh:
%result = mhlo.popcnt %operand : tensor<4xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.power
(mhlo::PowOp)
Pow operation
Sintaksis:
operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise exponentiation of lhs
tensor by rhs
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power
Contoh:
%result = mhlo.power %lhs, %rhs : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.ragged_dot
(mhlo::RaggedDotOp)
Ragged matrix multiplication over a single ragged dimension
This operation takes three tensor args---lhs, rhs, and group_sizes---and a "ragged_dot_dimension_numbers" attribute. Like dot_general, the lhs and rhs are allowed arbitrary batch and contracting dimensions. Additionally, the lhs is required to have one ragged dimension, and the rhs may have at most one group dimension. The op has three modes, depending on the kind of the lhs ragged dimension.
In mode 1, the shape-signature is [b,m,k], [g,b,k,n], [b,g] -> [b,m,n]
. Here the ragged dimension is an lhs non-contracting dimension ( m
). The dimensions b
and k
represent batch and contracting dimensions respectively. The rhs is required to have a group dimension ( g
).
In mode 2, the shape-signature is [b,m,k], [b,k,n], [b,g] -> [g,b,m,n]
. Here the ragged dimension is an lhs/rhs contracting dimension ( k
).
In mode 3, the shape-signature is [b,m,k], [b,k,n], [g] -> [b,m,n]
. Here the ragged dimension is an lhs/rhs batch dimension ( b
).
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
ragged_dot_dimension_numbers | ::mlir::mhlo::RaggedDotDimensionNumbersAttr | Attribute that models the dimension information for ragged dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operan | Keterangan |
---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
group_sizes | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.real
(mhlo::RealOp)
Real operation
Sintaksis:
operation ::= `mhlo.real` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the real part, element-wise, from the operand
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real
Contoh:
%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.real_dynamic_slice
(mhlo::RealDynamicSliceOp)
RealDynamicSlice operation
Sintaksis:
operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as SliceOp except that start_indices
, limit_indices
and strides
are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Contoh:
%result = mhlo.real_dynamic_slice %operand,
%start_indices, %limit_indices, %strides
: (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
limit_indices | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
strides | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.recv
(mhlo::RecvOp)
Recv operation
Receives data from a channel with channel_id
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv
Contoh:
%results:2 = "mhlo.recv"(%token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
is_host_transfer = false,
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
source_target_pairs | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operan | Keterangan |
---|---|
token | token |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token |
mhlo.reduce
(mhlo::ReduceOp)
Reduce operation
Applies a reduction function body
to inputs
and init_values
along the dimensions
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce
Contoh:
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameVariadicOperandSize
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operan | Keterangan |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_values | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.reduce_precision
(mhlo::ReducePrecisionOp)
ReducePrecision operation
Sintaksis:
operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))
Performs element-wise conversion of operand
to another floating-point type that uses exponent_bits
and mantissa_bits
and back to the original floating-point type and produces an output
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision
Contoh:
%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
exponent_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
mantissa_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
output | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.reduce_scatter
(mhlo::ReduceScatterOp)
ReduceScatter operation
Within each process group in the process grid, performs reduction, using computations
, over the values of the operand
tensor from each process, splits the reduction result along scatter_dimension
into parts, and scatters the split parts between the processes to produce the result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter
Contoh:
%result = "mhlo.reduce_scatter"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg0, %arg1 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
scatter_dimension = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
scatter_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
use_global_device_ids | ::mlir::UnitAttr | unit attribute |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.reduce_window
(mhlo::ReduceWindowOp)
ReduceWindow operation
Applies a reduction function body
to windows of inputs
and init_values
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window
Contoh:
%result = "mhlo.reduce_window"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
window_dimensions = dense<[2, 1]> : tensor<2xi64>,
window_strides = dense<[4, 1]> : tensor<2xi64>,
base_dilations = dense<[2, 1]> : tensor<2xi64>,
window_dilations = dense<[3, 1]> : tensor<2xi64>,
padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameVariadicOperandSize
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
base_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operan | Keterangan |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_values | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.remainder
(mhlo::RemOp)
Rem operation
Sintaksis:
operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise remainder of dividend lhs
and divisor rhs
tensors and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder
Contoh:
%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.replica_id
(mhlo::ReplicaIdOp)
ReplicaId operation
Sintaksis:
operation ::= `mhlo.replica_id` attr-dict `:` type(results)
Produces replica_id
of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id
Contoh:
%result = mhlo.replica_id : tensor<ui32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 32-bit unsigned integer values |
mhlo.reshape
(mhlo::ReshapeOp)
Reshape operation
Sintaksis:
operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)
Performs reshape of operand
tensor to a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape
Contoh:
%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>
Traits: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | statically shaped or single bounded dimension tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.return
(mhlo::ReturnOp)
_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425
Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.
Example:
```mlir
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
```_
Syntax:
```
operation ::= mhlo.return
$results attr-dict ( :
type($results)^)?
Traits: `AlwaysSpeculatableImplTrait`, `Terminator`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
### `mhlo.reverse` (mhlo::ReverseOp)
_Reverse operation_
Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.
See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>
Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.rng
(mhlo::RngOp)
Rng operation
Generates random numbers using the rng_distribution
algorithm and produces a result
tensor of a given shape shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng
Contoh:
%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>
Traits: InferTensorType
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
rng_distribution | ::mlir::mhlo::RngDistributionAttr | XLA PRNG distribution to be used. |
Operands:
Operan | Keterangan |
---|---|
a | 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
b | 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
mhlo.rng_bit_generator
(mhlo::RngBitGeneratorOp)
RngBitGenerator operation
Returns an output
filled with uniform random data and an updated output state output_state
given an initial state initial_state
using the pseudorandom number generator algorithm rng_algorithm
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator
Contoh:
%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
rng_algorithm | ::mlir::mhlo::RngAlgorithmAttr | XLA PRNG algorithm to be used. |
Operands:
Operan | Keterangan |
---|---|
initial_state | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
output_state | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
output | statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
mhlo.round_nearest_afz
(mhlo::RoundOp)
Round operation
Sintaksis:
operation ::= `mhlo.round_nearest_afz` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz
Contoh:
%result = mhlo.round_nearest_afz %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.round_nearest_even
(mhlo::RoundNearestEvenOp)
RoundNearestEven operation
Sintaksis:
operation ::= `mhlo.round_nearest_even` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even
Contoh:
%result = mhlo.round_nearest_even %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.rsqrt
(mhlo::RsqrtOp)
Rsqrt operation
Sintaksis:
operation ::= `mhlo.rsqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise reciprocal square root operation on operand
tensor and produces a result
tensor, implementing the rSqrt
operation from the IEEE-754 specification.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt
Contoh:
%result = mhlo.rsqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.scatter
(mhlo::ScatterOp)
Scatter operation
Produces results
tensors which are equal to inputs
tensors except that several slices specified by scatter_indices
are updated with the values updates
using update_computation
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter
Contoh:
%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
scatter_dimension_numbers = #mhlo.scatter<
update_window_dims = [3, 4],
inserted_window_dims = [1],
input_batching_dims = [0],
scatter_indices_batching_dims = [1],
scatter_dims_to_operand_dims = [2, 1],
index_vector_dim = 3>,
indices_are_sorted = false,
unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>
Traits: RecursiveMemoryEffects
, SameVariadicOperandSize
Interfaces: InferTypeOpInterface
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
scatter_dimension_numbers | ::mlir::mhlo::ScatterDimensionNumbersAttr | Attribute that models the dimension information for scatter |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
unique_indices | ::mlir::BoolAttr | bool attribute |
Operands:
Operan | Keterangan |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
scatter_indices | ranked tensor of integer or index values |
updates | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.select
(mhlo::SelectOp)
Select operation
Sintaksis:
operation ::= `mhlo.select` operands attr-dict `:`
custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))
Produces a result
tensor where each element is selected from on_true
or on_false
tensor based on the value of the corresponding element of pred
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select
Contoh:
%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait
, HLO_BroadcastingElementwise
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
pred | ranked tensor of bool values |
on_true | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
on_false | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.select_and_scatter
(mhlo::SelectAndScatterOp)
SelectAndScatter operation
Scatters the values from the source
tensor using scatter
based on the outcome of reduce_window
of the input
tensor using select
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter
Contoh:
%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GE>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
window_dimensions = dense<[3, 1]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>,
padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>
Traits: RecursiveMemoryEffects
Interfaces: InferTypeOpInterface
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
source | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.send
(mhlo::SendOp)
Send operation
Sends inputs
to a channel channel_id
and produces a result
token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send
Contoh:
%result = "mhlo.send"(%operand, %token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
is_host_transfer = false,
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
source_target_pairs | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operan | Keterangan |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
token | token |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | token |
mhlo.set_dimension_size
(mhlo::SetDimensionSizeOp)
SetDimensionSize operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize
Contoh:
%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
size | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.shift_left
(mhlo::ShiftLeftOp)
ShiftLeft operation
Sintaksis:
operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise left-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left
Contoh:
%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.shift_right_arithmetic
(mhlo::ShiftRightArithmeticOp)
ShiftRightArithmetic operation
Sintaksis:
operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise arithmetic right-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic
Contoh:
%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.shift_right_logical
(mhlo::ShiftRightLogicalOp)
ShiftRightLogical operation
Sintaksis:
operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise logical right-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical
Contoh:
%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.sign
(mhlo::SignOp)
Sign operation
Sintaksis:
operation ::= `mhlo.sign` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Returns the sign of the operand
element-wise and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign
Contoh:
%result = mhlo.sign %operand : tensor<7xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.sine
(mhlo::SineOp)
Sine operation
Sintaksis:
operation ::= `mhlo.sine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sine operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine
Contoh:
%result = mhlo.sine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.sinh
(mhlo::SinhOp)
Sinh operation
Sintaksis:
operation ::= `mhlo.sinh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sinh operation on operand
tensor and produces a result
tensor.
Contoh:
%result = mhlo.sinh %operand : tensor<2x2xf32>
Traits: CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Operands:
Operan | Keterangan |
---|---|
operand | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.slice
(mhlo::SliceOp)
Slice operation
Extracts a slice from the operand
using statically-computed starting indices and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Contoh:
%result = "mhlo.slice" (%operand) {
start_indices = dense<[1, 2]> : tensor<2xi64>,
limit_indices = dense<[3, 4]> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
start_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
limit_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.sort
(mhlo::SortOp)
Sort operation
Sorts a variadic number of tensors in inputs
together, according to a custom comparator
, along the given dimension
and produces a variadic number of tensors as results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort
Contoh:
%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
%predicate = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
dimension = 0 : i64,
is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)
Traits: InferTensorType
, RecursiveMemoryEffects
, SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
is_stable | ::mlir::BoolAttr | bool attribute |
Operands:
Operan | Keterangan |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.sqrt
(mhlo::SqrtOp)
Sqrt operation
Sintaksis:
operation ::= `mhlo.sqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise square root operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt
Contoh:
%result = mhlo.sqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.stochastic_convert
(mhlo::StochasticConvertOp)
StochasticConvert operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295
Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.
Traits: AlwaysSpeculatableImplTrait
, Elementwise
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
random | ranked tensor of 2/4/8/16/32/64-bit unsigned integer values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.subtract
(mhlo::SubtractOp)
Subtract operation
Sintaksis:
operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise subtraction of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract
Contoh:
%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.tan
(mhlo::TanOp)
Tan operation
Sintaksis:
operation ::= `mhlo.tan` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954
Informally, this operation returns Tan(operand)
element-wise.
Contoh:
%0 = mhlo.tan %arg0 : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.tanh
(mhlo::TanhOp)
Tanh operation
Sintaksis:
operation ::= `mhlo.tanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise hyperbolic tangent operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh
Contoh:
%result = mhlo.tanh %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.topk
(mhlo::TopKOp)
TopK operation
Sintaksis:
operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
type($operand) `->` `(`type($values)`,` type($indices)`)`
Returns top k
values and their indices, along the last dimension of the operand if largest=true
or the bottom k
values if largest=false
.
See: https://www.tensorflow.org/xla/operation_semantics#top-k
Contoh:
%values, %indices = mhlo.topk(%operand, k=5, largest=true)
: tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)
Traits: InferTensorType
, RecursiveMemoryEffects
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
k | ::mlir::IntegerAttr | 64-bit signless integer attribute |
largest | ::mlir::BoolAttr | bool attribute |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
values | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
indices | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.torch_index_select
(mhlo::TorchIndexSelectOp)
TorchIndexSelect operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html
The batch_dims
attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.
Contoh:
%result = "mhlo.torch_index_select"(%operand, %index) {
dim = 2 : i64,
batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
dim | ::mlir::IntegerAttr | 64-bit signless integer attribute |
batch_dims | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
index | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.trace
(mhlo::TraceOp)
Trace operation
Sintaksis:
operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604
It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.
Contoh:
mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
tag | ::mlir::StringAttr | string attribute |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.transpose
(mhlo::TransposeOp)
Transpose operation
Permutes the dimensions of operand
tensor using permutation
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose
Contoh:
%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
permutation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.triangular_solve
(mhlo::TriangularSolveOp)
TriangularSolve operation
Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve
Contoh:
%result = "mhlo.triangular_solve"(%a, %b) {
left_side = true,
lower = true,
unit_diagonal = false,
transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
left_side | ::mlir::BoolAttr | bool attribute |
lower | ::mlir::BoolAttr | bool attribute |
unit_diagonal | ::mlir::BoolAttr | bool attribute |
transpose_a | ::mlir::mhlo::TransposeAttr | Transpose options |
Operands:
Operan | Keterangan |
---|---|
a | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
b | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.tuple
(mhlo::TupleOp)
Tuple operation
Sintaksis:
operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))
Produces a result
tuple from values val
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple
Contoh:
%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
val | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.uniform_dequantize
(mhlo::UniformDequantizeOp)
UniformDequantize operation
Sintaksis:
operation ::= `mhlo.uniform_dequantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of quantized tensor operand
to a floating-point tensor result
according to the quantization parameters defined by the operand
type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize
Contoh:
%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, InferTensorType
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of per-tensor integer quantized or per-axis integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.uniform_quantize
(mhlo::UniformQuantizeOp)
UniformQuantize operation
Sintaksis:
operation ::= `mhlo.uniform_quantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of floating-point tensor or quantized tensor operand
to a quantized tensor result
according to the quantization parameters defined by the result
type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize
Contoh:
%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of per-tensor integer quantized or per-axis integer quantized values |
mhlo.while
(mhlo::WhileOp)
While operation
Produces the output from executing body
function 0 or more times while the cond
function outputs true
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while
Contoh:
%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction LT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)
Traits: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferTypeOpInterface
, OpAsmOpInterface
Operands:
Operan | Keterangan |
---|---|
operand | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.xla.rng_get_and_update_state
(mhlo::XlaRngGetAndUpdateStateOp)
XlaRngGetAndUpdateState operation
Sintaksis:
operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.
The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.
Interfaces: InferTypeOpInterface
Atribut:
Atribut | MLIR Type | Keterangan |
---|---|---|
delta | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Hasil:
Hasil | Keterangan |
---|---|
«unnamed» | statically shaped tensor of 64-bit unsigned integer values |
mhlo.xor
(mhlo::XorOp)
Xor operation
Sintaksis:
operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise XOR of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor
Contoh:
%result = mhlo.xor %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operan | Keterangan |
---|---|
lhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Hasil:
Hasil | Keterangan |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Atribut
ArgResultAliasAttr
Attribute that models the alias relationship of entry function argument
This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex
. The argTupleIndices
and resultTupleIndices
are used to index into nested tuples in operand and result respectively. If isMustAlias
is true then the operand-result pair must alias.
This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1
may alias 0-th result.
func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
mhlo.result_alias<result_index = [2], ...>}
) -> tensor<2xf32>, tensor<3xf32> {
// function body ...
}
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
argTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensi |
resultIndex | int64_t | |
resultTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensi |
isMustAlias | bool |
ChannelHandleAttr
Two 64-bit integers 'handle' and 'type'
Sintaksis:
#mhlo.channel_handle<
int64_t, # handle
int64_t # type
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
menangani | int64_t | |
jenis | int64_t |
ComparisonDirectionAttr
Which comparison operation to perform.
Sintaksis:
#mhlo.comparison_direction<
::mlir::mhlo::ComparisonDirection # value
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::mhlo::ComparisonDirection | an enum of type ComparisonDirection |
ComparisonTypeAttr
Which comparison type to use.
Sintaksis:
#mhlo.comparison_type<
::mlir::mhlo::ComparisonType # value
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::mhlo::ComparisonType | an enum of type ComparisonType |
ConvDimensionNumbersAttr
Structure of dimension information for conv op
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
inputBatchDimension | int64_t | |
inputFeatureDimension | int64_t | |
inputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensi |
kernelInputFeatureDimension | int64_t | |
kernelOutputFeatureDimension | int64_t | |
kernelSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensi |
outputBatchDimension | int64_t | |
outputFeatureDimension | int64_t | |
outputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensi |
CrossProgramPrefetchAttr
Argument that is prefetched from another program
Sintaksis:
#mhlo.cross_program_prefetch<
int64_t, # parameter
::llvm::ArrayRef<int64_t>, # indices
std::optional<int64_t> # offset
>
This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr
, parameter
tells us which argument of the main
function of the module is prefetched, and indices
is a shape index telling us what subshape of that argument is prefetched.
A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices
is the shape achieved after indexing by each element of indices
in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>>
is tensor<i32>
.
An empty value for indices
means the whole shape is prefetched.
Misalnya,
module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
}
func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
%2 = "mhlo.async_done"(%1) {called_computation=@copy}
return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
}
}
The parameter = 0
tells us that the async copy of the 0
th parameter is a cross_program_prefetch
, while the index
of [0]
tells us that the 0
th element of the tuple is prefetched while the other element of the tuple is not.
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
parameter | int64_t | |
indeks | ::llvm::ArrayRef<int64_t> | Dimensi |
mengimbangi | std::optional<int64_t> |
CustomCallScheduleAttr
Specifies the desired schedule for the custom-call.
Sintaksis:
#mhlo.custom_call_schedule<
::mlir::mhlo::CustomCallSchedule # value
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::mhlo::CustomCallSchedule | an enum of type CustomCallSchedule |
DequantizeModeAttr
_Dequantization mode. Only MIN COMBINED is supported.
Sintaksis:
#mhlo.dequantize_mode<
::mlir::mhlo::DequantizeMode # value
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::mhlo::DequantizeMode | an enum of type DequantizeMode |
DomainKindAttr
Kind of domain metatdata attached to an HLO domain.
Sintaksis:
#mhlo.kind<
::mlir::mhlo::DomainKind # value
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::mhlo::DomainKind | an enum of type DomainKind |
DotAlgorithmAttr
Attribute that models the algorithm constraints to use for computing dot.
Sintaksis:
#mhlo.dot_algorithm<
Type, # lhsPrecisionType
Type, # rhsPrecisionType
Type, # accumulationType
int64_t, # lhsComponentCount
int64_t, # rhsComponentCount
int64_t, # numPrimitiveOperations
bool # allowImpreciseAccumulation
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
lhsPrecisionType | Type | |
rhsPrecisionType | Type | |
accumulationType | Type | |
lhsComponentCount | int64_t | |
rhsComponentCount | int64_t | |
numPrimitiveOperations | int64_t | |
allowImpreciseAccumulation | bool |
DotDimensionNumbersAttr
Attribute that models the dimension information for dot.
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
lhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Dimensi |
rhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Dimensi |
lhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Dimensi |
rhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Dimensi |
FftTypeAttr
XLA fast fourier transform type.
Sintaksis:
#mhlo.fft_type<
::mlir::mhlo::FftType # value
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::mhlo::FftType | an enum of type FftType |
FusionKindAttr
Fusion kind
Sintaksis:
#mhlo.fusion_kind<
::mlir::mhlo::FusionKind # value
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::mhlo::FusionKind | an enum of type FusionKind |
GatherDimensionNumbersAttr
Attribute that models the dimension information for gather
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
offsetDims | ::llvm::ArrayRef<int64_t> | Dimensi |
collapsedSliceDims | ::llvm::ArrayRef<int64_t> | Dimensi |
operandBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensi |
startIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensi |
startIndexMap | ::llvm::ArrayRef<int64_t> | Dimensi |
indexVectorDim | int64_t |
OutputOperandAliasAttr
Attribute that models the alias relationship of output and operand of a CustomCall op
Sintaksis:
#mhlo.output_operand_alias<
::llvm::ArrayRef<int64_t>, # outputTupleIndices
int64_t, # operandIndex
::llvm::ArrayRef<int64_t> # operandTupleIndices
>
This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index
. The output_tuple_indices
and operand_tuple_indices
are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.
See https://www.tensorflow.org/xla/aliasing
Example when used as array with in mhlo.custom-call:
%0 = "mhlo.custom_call"(%arg0, %arg1) {
// other attributes
output_operand_alias = [
#mhlo.output_operand_alias<output_tuple_indices = [0],
operand_index = 0,
operand_tuple_indices = [1]>
]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>
The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
outputTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensi |
operandIndex | int64_t | |
operandTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensi |
PrecisionAttr
XLA precision for an operand. Has backend specific meaning.
Sintaksis:
#mhlo.precision<
::mlir::mhlo::Precision # value
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::mhlo::Precision | an enum of type Precision |
RaggedDotDimensionNumbersAttr
Attribute that models the dimension information for ragged dot.
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
dotDimensionNumbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
lhsRaggedDimensions | ::llvm::ArrayRef<int64_t> | Dimensi |
rhsGroupDimensions | ::llvm::ArrayRef<int64_t> | Dimensi |
ResultAccuracyAttr
The requested accuracy for unary ops.
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
atol | APFloat | |
rtol | APFloat | |
ulps | int64_t | |
mode | ::mlir::mhlo::ResultAccuracyModeAttr | XLA result accuracy mode. |
ResultAccuracyModeAttr
XLA result accuracy mode.
Sintaksis:
#mhlo.result_accuracy_mode<
::mlir::mhlo::ResultAccuracyMode # value
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::mhlo::ResultAccuracyMode | an enum of type ResultAccuracyMode |
RngAlgorithmAttr
XLA PRNG algorithm to be used.
Sintaksis:
#mhlo.rng_algorithm<
::mlir::mhlo::RngAlgorithm # value
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::mhlo::RngAlgorithm | an enum of type RngAlgorithm |
RngDistributionAttr
XLA PRNG distribution to be used.
Sintaksis:
#mhlo.rng_distribution<
::mlir::mhlo::RngDistribution # value
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::mhlo::RngDistribution | an enum of type RngDistribution |
ScatterDimensionNumbersAttr
Attribute that models the dimension information for scatter
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
updateWindowDims | ::llvm::ArrayRef<int64_t> | Dimensi |
insertedWindowDims | ::llvm::ArrayRef<int64_t> | Dimensi |
inputBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensi |
scatterIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensi |
scatterDimsToOperandDims | ::llvm::ArrayRef<int64_t> | Dimensi |
indexVectorDim | int64_t |
TransposeAttr
Transpose options
Sintaksis:
#mhlo.transpose<
::mlir::mhlo::Transpose # value
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::mhlo::Transpose | an enum of type Transpose |
TypeExtensionsAttr
Attribute that extends tensor type with MHLO type properties.
Sintaksis:
#mhlo.type_extensions<
::llvm::ArrayRef<int64_t> # bounds
>
This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding
field of the tensor type.
See HLO_BoundedAttrInterface
for documentation for bounds
.
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
batas | ::llvm::ArrayRef<int64_t> |
Jenis
AsyncBundleType
Opaque collection of other types
Sintaksis:
!mhlo.async_bundle<
::llvm::ArrayRef<Type> # types
>
Parameternya:
Parameter | C++ type | Keterangan |
---|---|---|
jenis | ::llvm::ArrayRef<Type> |
Enum
ComparisonDirection
Which comparison operation to perform.
Kasus:
Simbol | Nilai | Rangkaian |
---|---|---|
Keseimbangan | 0 | Keseimbangan |
Timur Laut | 1 | Timur Laut |
GE | 2 | GE |
GT | 3 | GT |
LE | 4 | LE |
LEBIH BANYAK | 5 | LEBIH BANYAK |
ComparisonType
Which comparison type to use.
Kasus:
Simbol | Nilai | Rangkaian |
---|---|---|
NOTYPE | 0 | NOTYPE |
MENGAMBANG | 1 | MENGAMBANG |
TOTALORDER | 2 | TOTALORDER |
DITANDATANGANI | 3 | DITANDATANGANI |
UNSIGNED | 4 | UNSIGNED |
CustomCallApiVersion
Custom call API version
Kasus:
Simbol | Nilai | Rangkaian |
---|---|---|
API_VERSION_UNSPECIFIED | 0 | API_VERSION_UNSPECIFIED |
API_VERSION_ORIGINAL | 1 | API_VERSION_ORIGINAL |
API_VERSION_STATUS_RETURNING | 2 | API_VERSION_STATUS_RETURNING |
API_VERSION_STATUS_RETURNING_UNIFIED | 3 | API_VERSION_STATUS_RETURNING_UNIFIED |
API_VERSION_TYPED_FFI | 4 | API_VERSION_TYPED_FFI |
CustomCallSchedule
Specifies the desired schedule for the custom-call.
Kasus:
Simbol | Nilai | Rangkaian |
---|---|---|
TIDAK ADA | 0 | TIDAK ADA |
TERBARU | 1 | TERBARU |
PALING AWAL | 2 | PALING AWAL |
DequantizeMode
_Dequantization mode. Only MIN COMBINED is supported.
Kasus:
Simbol | Nilai | Rangkaian |
---|---|---|
MIN_COMBINED | 0 | MIN_COMBINED |
DomainKind
Kind of domain metatdata attached to an HLO domain.
Kasus:
Simbol | Nilai | Rangkaian |
---|---|---|
sharding | 0 | sharding |
FftType
XLA fast fourier transform type.
Kasus:
Simbol | Nilai | Rangkaian |
---|---|---|
FFT | 0 | FFT |
IFFT | 1 | IFFT |
RFFT | 2 | RFFT |
IRFFT | 3 | IRFFT |
FusionKind
Fusion kind
Kasus:
Simbol | Nilai | Rangkaian |
---|---|---|
kLoop | 0 | kLoop |
kInput | 1 | kInput |
kOutput | 2 | kOutput |
kCustom | 3 | kCustom |
Presisi
XLA precision for an operand. Has backend specific meaning.
Kasus:
Simbol | Nilai | Rangkaian |
---|---|---|
BAWAAN | 0 | BAWAAN |
TINGGI | 1 | TINGGI |
PALING TINGGI | 2 | PALING TINGGI |
ResultAccuracyMode
XLA result accuracy mode.
Kasus:
Simbol | Nilai | Rangkaian |
---|---|---|
BAWAAN | 0 | BAWAAN |
PALING TINGGI | 1 | PALING TINGGI |
TOLERANSI | 2 | TOLERANSI |
RngAlgorithm
XLA PRNG algorithm to be used.
Kasus:
Simbol | Nilai | Rangkaian |
---|---|---|
BAWAAN | 0 | BAWAAN |
THREE_FRY | 1 | THREE_FRY |
PHILOX | 2 | PHILOX |
RngDistribution
XLA PRNG distribution to be used.
Kasus:
Simbol | Nilai | Rangkaian |
---|---|---|
SERAGAM | 1 | SERAGAM |
NORMAL | 2 | NORMAL |
Mengubah urutan
Transpose options
Kasus:
Simbol | Nilai | Rangkaian |
---|---|---|
TRANSPOSE_INVALID | 0 | TRANSPOSE_INVALID |
NO_TRANSPOSE | 1 | NO_TRANSPOSE |
MENGUBAH URUTAN | 2 | MENGUBAH URUTAN |
ADJOINT | 3 | ADJOINT |