透過集合功能整理內容
你可以依據偏好儲存及分類內容。
開始使用下方的學習教材之前,請確認你符合下列條件:
-
完成我們的 TensorFlow 機器學習基本知識課程,或是具備同等知識
-
具備軟體開發經驗,特別是 Python 開發經驗
如果你想達成下列目標,就很適合從本課程著手:
-
增進對機器學習的理解
-
著手瞭解論文資料並使用 TensorFlow 實作相關程式碼
繼續之前,您應該已經具備機器學習運作方式的背景知識,或已完成新手課程 TensorFlow 機器學習基本知識中的學習內容。以下內容旨在引導學員認識更多理論和進階機器學習內容。您會發現許多資源都使用 TensorFlow,但這項知識也可以應用在其他機器學習架構上。
為了更深入瞭解機器學習,您應該具備 Python 程式設計經驗,以及微積分、線性代數、機率和統計方面的背景知識。為協助您加深您的機器學習知識,我們特別整理了一些推薦資源、大學課程和幾本教科書。
步驟 1:複習數學概念
Essence of Calculus
由 3Blue1Brown 提供
3blue1brown 提供的一系列視覺化短片,以精彩明瞭的方式講解微積分的基本原理,讓觀眾深刻理解基本定理,而不只是簡單說明運算方式而已。
步驟 2:透過這些課程和書籍,加深你對深度學習的理解
⬆ 和 ⬇
閱讀這些書籍:
深度學習
作者:Ian Goodfellow、Yoshua Bengio 和 Aaron Courville
本深度學習教科書意在幫助學生和從業人員瞭解機器學習領域概論,特別是深度學習這個主題。
步驟 3:閱讀論文並使用 TensorFlow 進行實作
[null,null,[],[],[],null,["# Theoretical and Advanced Machine Learning\n\n[TensorFlow](/tutorials) › [Resources](/resources/models-datasets) › [Learn ML](/resources/learn-ml) › [Guide](/resources/learn-ml/theoretical-and-advanced-machine-learning) › \n\nTheoretical and advanced machine learning with TensorFlow\n=========================================================\n\nBefore starting on the learning materials below, be sure to:\n\n1. Complete our curriculum [Basics of machine learning with TensorFlow](/resources/learn-ml/basics-of-machine-learning), or have equivalent knowledge\n\n2. Have software development experience, particularly in Python\n\nThis curriculum is a starting point for people who would like to:\n\n1. Improve their understanding of ML\n\n2. Begin understanding and implementing papers with TensorFlow\n\nYou should already have background knowledge of how ML works or completed the learning materials in the beginner curriculum [Basics of machine learning with TensorFlow](/resources/learn-ml/basics-of-machine-learning) before continuing. The below content is intended to guide learners to more theoretical and advanced machine learning content. You will see that many of the resources use TensorFlow, however, the knowledge is transferable to other ML frameworks.\n\nTo further your understanding of ML, you should have Python programming experience as well as a background in calculus, linear algebra, probability, and statistics. To help you deepen your ML knowledge, we have listed a number of recommended resources and courses from universities, as well as a couple of textbooks. \n\nStep 1: Refresh your understanding of math concepts\n---------------------------------------------------\n\nML is a math heavy discipline. If you plan to modify ML models, or build new ones from scratch, familiarity with the underlying math concepts is important. You don't have to learn all the math upfront, but instead you can look up concepts you are unfamiliar with as you come across them. If it's been a while since you've taken a math course, try watching the [Essence of linear algebra](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab) and the [Essence of calculus](https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr) playlists from 3blue1brown for a refresher. We recommend that you continue by taking a class from a university, or watching open access lectures from MIT, such as [Linear Algebra](https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/) or [Single Variable Calculus](https://ocw.mit.edu/courses/mathematics/18-01-single-variable-calculus-fall-2006/). \n[Essence of Linear Algebra](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab) \nby 3Blue1Brown \nA series of short, visual videos from 3blue1brown that explain the geometric understanding of matrices, determinants, eigen-stuffs and more. \nFree [View series](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab) \nMath \n[Essence of Calculus](https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr) \nby 3Blue1Brown \nA series of short, visual videos from 3blue1brown that explain the fundamentals of calculus in a way that give you a strong understanding of the fundamental theorems, and not just how the equations work. \nFree [View series](https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr) \nMath \n[MIT 18.06: Linear Algebra](https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/) \nThis introductory course from MIT covers matrix theory and linear algebra. Emphasis is given to topics that will be useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices. \nFree [View course](https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/) \nMath \n[MIT 18.01: Single Variable Calculus](https://ocw.mit.edu/courses/mathematics/18-01-single-variable-calculus-fall-2006/) \nThis introductory calculus course from MIT covers differentiation and integration of functions of one variable, with applications. \nFree [View course](https://ocw.mit.edu/courses/mathematics/18-01-single-variable-calculus-fall-2006/) \nMath \n\nStep 2: Deepen your understanding of deep learning with these courses and books\n-------------------------------------------------------------------------------\n\nThere is no single course that will teach you everything you need to know about deep learning. One approach that may be helpful is to take a few courses at the same time. Although there will be overlap in the material, having multiple instructors explain concepts in different ways can be helpful, especially for complex topics. Below are several courses we recommend to help get you started. You can explore each of them together, or just choose the ones that feel the most relevant to you.\n\nRemember, the more you learn, and reinforce these concepts through practice, the more adept you will be at building and evaluating your own ML models. \n\n##### Take these courses:\n\n[MIT course 6.S191: Introduction to Deep Learning](http://introtodeeplearning.com/) is an introductory course for Deep Learning with TensorFlow from MIT and also a wonderful resource.\n\nAndrew Ng's [Deep Learning Specialization at Coursera](https://www.coursera.org/specializations/deep-learning) also teaches the foundations of deep learning, including convolutional networks, RNNS, LSTMs, and more. This specialization is designed to help you apply deep learning in your work, and to build a career in AI. \n[MIT 6.S191: Introduction to Deep Learning](http://introtodeeplearning.com/) \nIn this course from MIT, you will gain foundational knowledge of deep learning algorithms and get practical experience in building neural networks in TensorFlow. \nFree [View course](http://introtodeeplearning.com/) \nCode \nMath \nTheory \nBuild \n\nDeepLearning.AI\n[Deep Learning Specialization](https://www.coursera.org/specializations/deep-learning) \nIn five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects and build a career in AI. You will master not only the theory, but also see how it is applied in industry. \n[View course](https://www.coursera.org/specializations/deep-learning) \nCode \nMath \nTheory \nBuild \n\n##### ⬆ And ⬇\nRead these books:\n\nTo complement what you learn in the courses listed above, we recommend that you dive deeper by reading the books below. Each book is available online, and offers supplementary materials to help you practice.\n\nYou can start by reading [Deep Learning: An MIT Press Book](https://www.deeplearningbook.org/) by Ian Goodfellow, Yoshua Bengio, and Aaron Courville. The Deep Learning textbook is an advanced resource intended to help students deepen their understanding. The book is accompanied by [a website](http://www.deeplearningbook.org/), which provides a variety of supplementary materials, including exercises, lecture slides, corrections of mistakes, and other resources to give you hands on practice with the concepts.\n\nYou can also explore Michael Nielsen's online book [Neural Networks and Deep Learning](http://neuralnetworksanddeeplearning.com/). This book provides a theoretical background on neural networks. It does not use TensorFlow, but is a great reference for students interested in learning more. \n[Deep Learning](https://www.deeplearningbook.org/) \nby Ian Goodfellow, Yoshua Bengio, and Aaron Courville \nThis Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general, and deep learning in particular. \nFree [View book](https://www.deeplearningbook.org/) \nMath \nTheory \nBuild \n[Neural Networks and Deep Learning](http://neuralnetworksanddeeplearning.com/) \nby Michael Nielsen \nThis book provides a theoretical background on neural networks. It does not use TensorFlow, but is a great reference for students interested in learning more. \nFree [View book](http://neuralnetworksanddeeplearning.com/) \nCode \nMath \nTheory \nBuild \n\nStep 3: Read and implement papers with TensorFlow\n-------------------------------------------------\n\nAt this point, we recommend reading papers and trying the [advanced tutorials](/tutorials) on our website, which contain implementations of a few well known publications. The best way to learn an advanced application, [machine translation](/tutorials/text/transformer), or [image captioning](/tutorials/text/image_captioning), is to read the paper linked from the tutorial. As you work through it, find the relevant sections of the code, and use them to help solidify your understanding. \n[Previous\nBasics of machine learning with TensorFlow](/resources/learn-ml/basics-of-machine-learning) [Next\nSpecialization: Basics of TensorFlow for Javascript development](/resources/learn-ml/basics-of-tensorflow-for-js-development) \n\nLearn, develop and build with TensorFlow\n----------------------------------------\n\n[Get started](/learn)"]]