Xem trên TensorFlow.org | Xem trên GitHub | Tải xuống sổ ghi chép | Chạy ở Kaggle |
Ví dụ này dựa trên mẫu Keras-Tuner CIFAR10 để trình bày cách chạy các công việc điều chỉnh HP bằng cách sử dụng TensorFlow Cloud và Google Cloud Platform trên quy mô lớn.
Nhập các mô-đun cần thiết
import datetime
import uuid
import numpy as np
import pandas as pd
import tensorflow as tf
import os
import sys
import subprocess
from tensorflow.keras import datasets, layers, models
from sklearn.model_selection import train_test_split
! pip install -q tensorflow-cloud
import tensorflow_cloud as tfc
tf.version.VERSION
'2.6.0'
Cấu hình dự án
Đặt tham số dự án Đối với Google Cloud Các tham số cụ thể hãy tham khảo Hướng dẫn thiết lập dự án Google Cloud .
# Set Google Cloud Specific parameters
# TODO: Please set GCP_PROJECT_ID to your own Google Cloud project ID.
GCP_PROJECT_ID = 'YOUR_PROJECT_ID'
# TODO: Change the Service Account Name to your own Service Account
SERVICE_ACCOUNT_NAME = 'YOUR_SERVICE_ACCOUNT_NAME'
SERVICE_ACCOUNT = f'{SERVICE_ACCOUNT_NAME}@{GCP_PROJECT_ID}.iam.gserviceaccount.com'
# TODO: set GCS_BUCKET to your own Google Cloud Storage (GCS) bucket.
GCS_BUCKET = 'YOUR_GCS_BUCKET_NAME'
# DO NOT CHANGE: Currently only the 'us-central1' region is supported.
REGION = 'us-central1'
# Set Tuning Specific parameters
# OPTIONAL: You can change the job name to any string.
JOB_NAME = 'cifar10'
# OPTIONAL: Set Number of concurrent tuning jobs that you would like to run.
NUM_JOBS = 5
# TODO: Set the study ID for this run. Study_ID can be any unique string.
# Reusing the same Study_ID will cause the Tuner to continue tuning the
# Same Study parameters. This can be used to continue on a terminated job,
# or load stats from a previous study.
STUDY_NUMBER = '00001'
STUDY_ID = f'{GCP_PROJECT_ID}_{JOB_NAME}_{STUDY_NUMBER}'
# Setting location were training logs and checkpoints will be stored
GCS_BASE_PATH = f'gs://{GCS_BUCKET}/{JOB_NAME}/{STUDY_ID}'
TENSORBOARD_LOGS_DIR = os.path.join(GCS_BASE_PATH,"logs")
Xác thực sổ ghi chép để sử dụng Dự án Google Cloud của bạn
Đối với Kaggle Notebook, hãy nhấp vào "Tiện ích bổ sung" -> "Google Cloud SDK" trước khi chạy ô bên dưới.
# Using tfc.remote() to ensure this code only runs in notebook
if not tfc.remote():
# Authentication for Kaggle Notebooks
if "kaggle_secrets" in sys.modules:
from kaggle_secrets import UserSecretsClient
UserSecretsClient().set_gcloud_credentials(project=GCP_PROJECT_ID)
# Authentication for Colab Notebooks
if "google.colab" in sys.modules:
from google.colab import auth
auth.authenticate_user()
os.environ["GOOGLE_CLOUD_PROJECT"] = GCP_PROJECT_ID
Tải và chuẩn bị dữ liệu
Đọc dữ liệu thô và phân chia để huấn luyện và kiểm tra các tập dữ liệu.
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
# Setting input specific parameters
# The model expects input of dimensions (INPUT_IMG_SIZE, INPUT_IMG_SIZE, 3)
INPUT_IMG_SIZE = 32
NUM_CLASSES = 10
Xác định kiến trúc mô hình và siêu tham số
Trong phần này, chúng tôi xác định các tham số điều chỉnh của mình bằng cách sử dụng Keras Tuner Hyper Parameters và chức năng xây dựng mô hình. Hàm xây dựng mô hình lấy một đối số hp mà từ đó bạn có thể lấy mẫu siêu tham số, chẳng hạn như hp.Int('units', min_value=32, max_value=512, step=32) (một số nguyên từ một phạm vi nhất định).
import kerastuner
from tensorflow.keras import layers
# Configure the search space
HPS = kerastuner.engine.hyperparameters.HyperParameters()
HPS.Int('conv_blocks', 3, 5, default=3)
for i in range(5):
HPS.Int('filters_' + str(i), 32, 256, step=32)
HPS.Choice('pooling_' + str(i), ['avg', 'max'])
HPS.Int('hidden_size', 30, 100, step=10, default=50)
HPS.Float('dropout', 0, 0.5, step=0.1, default=0.5)
HPS.Float('learning_rate', 1e-4, 1e-2, sampling='log')
def build_model(hp):
inputs = tf.keras.Input(shape=(INPUT_IMG_SIZE, INPUT_IMG_SIZE, 3))
x = inputs
for i in range(hp.get('conv_blocks')):
filters = hp.get('filters_'+ str(i))
for _ in range(2):
x = layers.Conv2D(
filters, kernel_size=(3, 3), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.ReLU()(x)
if hp.get('pooling_' + str(i)) == 'max':
x = layers.MaxPool2D()(x)
else:
x = layers.AvgPool2D()(x)
x = layers.GlobalAvgPool2D()(x)
x = layers.Dense(hp.get('hidden_size'),
activation='relu')(x)
x = layers.Dropout(hp.get('dropout'))(x)
outputs = layers.Dense(NUM_CLASSES, activation='softmax')(x)
model = tf.keras.Model(inputs, outputs)
model.compile(
optimizer=tf.keras.optimizers.Adam(
hp.get('learning_rate')),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
Định cấu hình CloudTuner
Trong phần này, chúng tôi định cấu hình bộ điều chỉnh đám mây để thực thi cả từ xa và cục bộ. Sự khác biệt chính giữa hai là chiến lược phân phối.
from tensorflow_cloud import CloudTuner
distribution_strategy = None
if not tfc.remote():
# Using MirroredStrategy to use a single instance with multiple GPUs
# during remote execution while using no strategy for local.
distribution_strategy = tf.distribute.MirroredStrategy()
tuner = CloudTuner(
build_model,
project_id=GCP_PROJECT_ID,
project_name= JOB_NAME,
region=REGION,
objective='accuracy',
hyperparameters=HPS,
max_trials=100,
directory=GCS_BASE_PATH,
study_id=STUDY_ID,
overwrite=True,
distribution_strategy=distribution_strategy)
# Configure Tensorboard logs
callbacks=[
tf.keras.callbacks.TensorBoard(log_dir=TENSORBOARD_LOGS_DIR)]
# Setting to run tuning remotely, you can run tuner locally to validate it works first.
if tfc.remote():
tuner.search(x=x_train, y=y_train, epochs=30, validation_split=0.2, callbacks=callbacks)
# You can uncomment the code below to run the tuner.search() locally to validate
# everything works before submitting the job to Cloud. Stop the job manually
# after one epoch.
# else:
# tuner.search(x=x_train, y=y_train, epochs=1, validation_split=0.2, callbacks=callbacks)
Bắt đầu đào tạo từ xa
Bước này sẽ chuẩn bị mã của bạn từ sổ ghi chép này để thực thi từ xa và bắt đầu NUM_JOBS chạy song song từ xa để huấn luyện mô hình. Sau khi công việc được gửi, bạn có thể chuyển sang bước tiếp theo để theo dõi tiến trình công việc thông qua Tensorboard.
# If you are using a custom image you can install modules via requirements txt file.
with open('requirements.txt','w') as f:
f.write('pandas==1.1.5\n')
f.write('numpy==1.18.5\n')
f.write('tensorflow-cloud\n')
f.write('keras-tuner\n')
# Optional: Some recommended base images. If you provide none the system will choose one for you.
TF_GPU_IMAGE= "tensorflow/tensorflow:latest-gpu"
TF_CPU_IMAGE= "tensorflow/tensorflow:latest"
tfc.run_cloudtuner(
distribution_strategy='auto',
requirements_txt='requirements.txt',
docker_config=tfc.DockerConfig(
parent_image=TF_GPU_IMAGE,
image_build_bucket=GCS_BUCKET
),
chief_config=tfc.COMMON_MACHINE_CONFIGS['K80_4X'],
job_labels={'job': JOB_NAME},
service_account=SERVICE_ACCOUNT,
num_jobs=NUM_JOBS
)
Kết quả đào tạo
Kết nối lại phiên bản Colab của bạn
Hầu hết các công việc đào tạo từ xa đều diễn ra trong thời gian dài, nếu bạn đang sử dụng Colab thì có thể hết thời gian chờ trước khi có kết quả đào tạo. Trong trường hợp đó, hãy chạy lại các phần sau để kết nối lại và định cấu hình phiên bản Colab của bạn nhằm truy cập vào kết quả đào tạo. Chạy các phần sau theo thứ tự:
- Nhập các mô-đun cần thiết
- Cấu hình dự án
- Xác thực sổ ghi chép để sử dụng Dự án Google Cloud của bạn
Tải bảng kéo
Trong khi quá trình đào tạo đang diễn ra, bạn có thể sử dụng Tensorboard để xem kết quả. Lưu ý rằng kết quả sẽ chỉ hiển thị sau khi quá trình đào tạo của bạn bắt đầu. Việc này có thể mất vài phút.
%load_ext tensorboard
%tensorboard --logdir $TENSORBOARD_LOGS_DIR
Bạn có thể truy cập các tài sản đào tạo như sau. Lưu ý rằng kết quả sẽ chỉ hiển thị sau khi công việc điều chỉnh của bạn đã hoàn thành ít nhất một lần dùng thử. Việc này có thể mất vài phút.
if not tfc.remote():
tuner.results_summary(1)
best_model = tuner.get_best_models(1)[0]
best_hyperparameters = tuner.get_best_hyperparameters(1)[0]
# References to best trial assets
best_trial_id = tuner.oracle.get_best_trials(1)[0].trial_id
best_trial_dir = tuner.get_trial_dir(best_trial_id)