TensorFlow Lite converter

The TensorFlow Lite converter takes a TensorFlow model and generates a TensorFlow Lite model (an optimized FlatBuffer format identified by the .tflite file extension). You have the following two options for using the converter:

  1. Python API (recommended): This makes it easier to convert models as part of the model development pipeline, apply optimizations, add metadata and has many more features.
  2. Command line: This only supports basic model conversion.

TFLite converter workflow

Python API

Helper code: To identify the installed TensorFlow version, run print(tf.__version__) and to learn more about the TensorFlow Lite converter API, run print(help(tf.lite.TFLiteConverter)).

If you've installed TensorFlow 2.x, you have the following two options: (if you've installed TensorFlow 1.x, refer to Github)

The following example shows how to convert a SavedModel into a TensorFlow Lite model.

import tensorflow as tf

# Convert the model
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) # path to the SavedModel directory
tflite_model = converter.convert()

# Save the model.
with open('model.tflite', 'wb') as f:
  f.write(tflite_model)

Convert a Keras model

The following example shows how to convert a Keras model into a TensorFlow Lite model.

import tensorflow as tf

# Create a model using high-level tf.keras.* APIs
model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(units=1, input_shape=[1])
    tf.keras.layers.Dense(units=16, activation='relu'),
    tf.keras.layers.Dense(units=1)
])
model.compile(optimizer='sgd', loss='mean_squared_error') # compile the model
model.fit(x=[-1, 0, 1], y=[-3, -1, 1], epochs=5) # train the model
# (to generate a SavedModel) tf.saved_model.save(model, "saved_model_keras_dir")

# Convert the model.
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()

# Save the model.
with open('model.tflite', 'wb') as f:
  f.write(tflite_model)

Convert concrete functions

The following example shows how to convert concrete functions into a TensorFlow Lite model.

import tensorflow as tf

# Create a model using low-level tf.* APIs
class Squared(tf.Module):
  @tf.function
  def __call__(self, x):
    return tf.square(x)
model = Squared()
# (ro run your model) result = Squared(5.0) # This prints "25.0"
# (to generate a SavedModel) tf.saved_model.save(model, "saved_model_tf_dir")
concrete_func = model.__call__.get_concrete_function()

# Convert the model
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
tflite_model = converter.convert()

# Save the model.
with open('model.tflite', 'wb') as f:
  f.write(tflite_model)

Other features

  import tensorflow as tf

  custom_opdef = """name: 'TFLiteAwesomeCustomOp' input_arg:
  { name: 'In' type: DT_FLOAT } output_arg: { name: 'Out' type: DT_FLOAT }
  attr : { name: 'a1' type: 'float'} attr : { name: 'a2' type: 'list(float)'}"""

  # Register custom opdefs before the invocation of converter API.
  tf.lite.python.convert.register_custom_opdefs([custom_opdef])

  converter = tf.lite.TFLiteConverter.from_saved_model(...)
  converter.allow_custom_ops = True

Command Line Tool

It is highly recommended that you use the Python API listed above instead, if possible.

If you've installed TensorFlow 2.x from pip, use the tflite_convert command as follows: (if you've installed TensorFlow 2.x from source then you can replace 'tflite_convert' with 'bazel run //tensorflow/lite/python:tflite_convert --' in the following sections, and if you've installed TensorFlow 1.x then refer to Github (reference, examples))

tflite_convert: To view all the available flags, use the following command:

$ tflite_convert --help

`--output_file`. Type: string. Full path of the output file.
`--saved_model_dir`. Type: string. Full path to the SavedModel directory.
`--keras_model_file`. Type: string. Full path to the Keras H5 model file.
`--enable_v1_converter`. Type: bool. (default False) Enables the converter and flags used in TF 1.x instead of TF 2.x.

You are required to provide the `--output_file` flag and either the `--saved_model_dir` or `--keras_model_file` flag.

Converting a SavedModel

tflite_convert \
  --saved_model_dir=/tmp/mobilenet_saved_model \
  --output_file=/tmp/mobilenet.tflite

Converting a Keras H5 model

tflite_convert \
  --keras_model_file=/tmp/mobilenet_keras_model.h5 \
  --output_file=/tmp/mobilenet.tflite

Next Steps

  • Add metadata, which makes it easier to create platform specific wrapper code when deploying models on devices.
  • Use the TensorFlow Lite interpreter to run inference on a client device (e.g. mobile, embedded).