Integrar buscadores de imagens

A pesquisa de imagens permite pesquisar imagens semelhantes em um banco de dados de imagens. Ele funciona incorporando a consulta de pesquisa em um vetor de alta dimensão que representa o significado semântico da consulta, seguido pela pesquisa de similaridade em um índice personalizado predefinido usando ScaNN (Scalable Nearest Neighbors).

Ao contrário da classificação de imagem , expandir o número de itens que podem ser reconhecidos não requer o retreinamento de todo o modelo. Novos itens podem ser adicionados simplesmente reconstruindo o índice. Isso também permite trabalhar com bancos de dados de imagens maiores (mais de 100 mil itens).

Use a API ImageSearcher da Biblioteca de Tarefas para implantar seu buscador de imagens personalizado em seus aplicativos móveis.

Principais recursos da API ImageSearcher

  • Recebe uma única imagem como entrada, executa extração de incorporação e pesquisa do vizinho mais próximo no índice.

  • Processamento de imagem de entrada, incluindo rotação, redimensionamento e conversão de espaço de cores.

  • Região de interesse da imagem de entrada.

Pré-requisitos

Antes de usar a API ImageSearcher , um índice precisa ser criado com base no corpus personalizado de imagens para pesquisar. Isso pode ser feito usando a API Model Maker Searcher seguindo e adaptando o tutorial .

Para isso você vai precisar de:

Após esta etapa, você deve ter um modelo de buscador TFLite autônomo (por exemplo, mobilenet_v3_searcher.tflite ), que é o modelo de incorporação de imagem original com o índice anexado aos metadados do modelo TFLite .

Executar inferência em Java

Etapa 1: importar a dependência do Gradle e outras configurações

Copie o arquivo de modelo .tflite searcher para o diretório assets do módulo Android onde o modelo será executado. Especifique que o arquivo não deve ser compactado e adicione a biblioteca do TensorFlow Lite ao arquivo build.gradle do módulo:

android {
    // Other settings

    // Specify tflite index file should not be compressed for the app apk
    aaptOptions {
        noCompress "tflite"
    }

}

dependencies {
    // Other dependencies

    // Import the Task Vision Library dependency (NNAPI is included)
    implementation 'org.tensorflow:tensorflow-lite-task-vision:0.4.0'
    // Import the GPU delegate plugin Library for GPU inference
    implementation 'org.tensorflow:tensorflow-lite-gpu-delegate-plugin:0.4.0'
}

Etapa 2: usando o modelo

// Initialization
ImageSearcherOptions options =
    ImageSearcherOptions.builder()
        .setBaseOptions(BaseOptions.builder().useGpu().build())
        .setSearcherOptions(
            SearcherOptions.builder().setL2Normalize(true).build())
        .build();
ImageSearcher imageSearcher =
    ImageSearcher.createFromFileAndOptions(context, modelFile, options);

// Run inference
List<NearestNeighbor> results = imageSearcher.search(image);

Veja o código fonte e o javadoc para mais opções de configuração do ImageSearcher .

Executar inferência em C++

// Initialization
ImageSearcherOptions options;
options.mutable_base_options()->mutable_model_file()->set_file_name(model_path);
options.mutable_embedding_options()->set_l2_normalize(true);
std::unique_ptr<ImageSearcher> image_searcher = ImageSearcher::CreateFromOptions(options).value();

// Create input frame_buffer from your inputs, `image_data` and `image_dimension`.
// See more information here: tensorflow_lite_support/cc/task/vision/utils/frame_buffer_common_utils.h
std::unique_ptr<FrameBuffer> frame_buffer = CreateFromRgbRawBuffer(
      image_data, image_dimension);

// Run inference
const SearchResult result = image_searcher->Search(*frame_buffer).value();

Consulte o código-fonte para obter mais opções para configurar o ImageSearcher .

Executar inferência em Python

Etapa 1: instale o pacote Pypi de suporte do TensorFlow Lite.

Você pode instalar o pacote Pypi do TensorFlow Lite Support usando o seguinte comando:

pip install tflite-support

Etapa 2: usando o modelo

from tflite_support.task import vision

# Initialization
image_searcher = vision.ImageSearcher.create_from_file(model_path)

# Run inference
image = vision.TensorImage.create_from_file(image_file)
result = image_searcher.search(image)

Consulte o código-fonte para obter mais opções para configurar o ImageSearcher .

Resultados de exemplo

Results:
 Rank#0:
  metadata: burger
  distance: 0.13452
 Rank#1:
  metadata: car
  distance: 1.81935
 Rank#2:
  metadata: bird
  distance: 1.96617
 Rank#3:
  metadata: dog
  distance: 2.05610
 Rank#4:
  metadata: cat
  distance: 2.06347

Experimente a ferramenta de demonstração CLI simples para ImageSearcher com seu próprio modelo e dados de teste.