![]() |
![]() |
![]() |
![]() |
Overview
In this codelab you'll train a simple image classification model on the CIFAR10 dataset, and then use the "membership inference attack" against this model to assess if the attacker is able to "guess" whether a particular sample was present in the training set. You will use the TF Privacy Report to visualize results from multiple models and model checkpoints.
Setup
import numpy as np
from typing import Tuple
from scipy import special
from sklearn import metrics
import tensorflow as tf
import tensorflow_datasets as tfds
# Set verbosity.
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
from sklearn.exceptions import ConvergenceWarning
import warnings
warnings.simplefilter(action="ignore", category=ConvergenceWarning)
warnings.simplefilter(action="ignore", category=FutureWarning)
Install TensorFlow Privacy.
pip install tensorflow_privacy
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import membership_inference_attack as mia
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackInputData
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackResultsCollection
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackType
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import PrivacyMetric
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import PrivacyReportMetadata
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import SlicingSpec
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import privacy_report
import tensorflow_privacy
Train two models, with privacy metrics
This section trains a pair of keras.Model
classifiers on the CIFAR-10
dataset. During the training process it collects privacy metrics, that will be used to generate reports in the bext section.
The first step is to define some hyperparameters:
dataset = 'cifar10'
num_classes = 10
activation = 'relu'
num_conv = 3
batch_size=50
epochs_per_report = 2
total_epochs = 50
lr = 0.001
Next, load the dataset. There's nothing privacy-specific in this code.
print('Loading the dataset.')
train_ds = tfds.as_numpy(
tfds.load(dataset, split=tfds.Split.TRAIN, batch_size=-1))
test_ds = tfds.as_numpy(
tfds.load(dataset, split=tfds.Split.TEST, batch_size=-1))
x_train = train_ds['image'].astype('float32') / 255.
y_train_indices = train_ds['label'][:, np.newaxis]
x_test = test_ds['image'].astype('float32') / 255.
y_test_indices = test_ds['label'][:, np.newaxis]
# Convert class vectors to binary class matrices.
y_train = tf.keras.utils.to_categorical(y_train_indices, num_classes)
y_test = tf.keras.utils.to_categorical(y_test_indices, num_classes)
input_shape = x_train.shape[1:]
assert x_train.shape[0] % batch_size == 0, "The tensorflow_privacy optimizer doesn't handle partial batches"
Loading the dataset.
Next define a function to build the models.
def small_cnn(input_shape: Tuple[int],
num_classes: int,
num_conv: int,
activation: str = 'relu') -> tf.keras.models.Sequential:
"""Setup a small CNN for image classification.
Args:
input_shape: Integer tuple for the shape of the images.
num_classes: Number of prediction classes.
num_conv: Number of convolutional layers.
activation: The activation function to use for conv and dense layers.
Returns:
The Keras model.
"""
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Input(shape=input_shape))
# Conv layers
for _ in range(num_conv):
model.add(tf.keras.layers.Conv2D(32, (3, 3), activation=activation))
model.add(tf.keras.layers.MaxPooling2D())
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(64, activation=activation))
model.add(tf.keras.layers.Dense(num_classes))
model.compile(
loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(learning_rate=lr),
metrics=['accuracy'])
return model
Build two three-layer CNN models using that function.
Configure the first to use a basic SGD optimizer, an the second to use a differentially private optimizer (tf_privacy.DPKerasAdamOptimizer
), so you can compare the results.
model_2layers = small_cnn(
input_shape, num_classes, num_conv=2, activation=activation)
model_3layers = small_cnn(
input_shape, num_classes, num_conv=3, activation=activation)
Define a callback to collect privacy metrics
Next define a keras.callbacks.Callback
to periorically run some privacy attacks against the model, and log the results.
The keras fit
method will call the on_epoch_end
method after each training epoch. The n
argument is the (0-based) epoch number.
You could implement this procedure by writing a loop that repeatedly calls Model.fit(..., epochs=epochs_per_report)
and runs the attack code. The callback is used here just because it gives a clear separation between the training logic, and the privacy evaluation logic.
class PrivacyMetrics(tf.keras.callbacks.Callback):
def __init__(self, epochs_per_report, model_name):
self.epochs_per_report = epochs_per_report
self.model_name = model_name
self.attack_results = []
def on_epoch_end(self, epoch, logs=None):
epoch = epoch+1
if epoch % self.epochs_per_report != 0:
return
print(f'\nRunning privacy report for epoch: {epoch}\n')
logits_train = self.model.predict(x_train, batch_size=batch_size)
logits_test = self.model.predict(x_test, batch_size=batch_size)
prob_train = special.softmax(logits_train, axis=1)
prob_test = special.softmax(logits_test, axis=1)
# Add metadata to generate a privacy report.
privacy_report_metadata = PrivacyReportMetadata(
# Show the validation accuracy on the plot
# It's what you send to train_accuracy that gets plotted.
accuracy_train=logs['val_accuracy'],
accuracy_test=logs['val_accuracy'],
epoch_num=epoch,
model_variant_label=self.model_name)
attack_results = mia.run_attacks(
AttackInputData(
labels_train=y_train_indices[:, 0],
labels_test=y_test_indices[:, 0],
probs_train=prob_train,
probs_test=prob_test),
SlicingSpec(entire_dataset=True, by_class=True),
attack_types=(AttackType.THRESHOLD_ATTACK,
AttackType.LOGISTIC_REGRESSION),
privacy_report_metadata=privacy_report_metadata)
self.attack_results.append(attack_results)
Train the models
The next code block trains the two models. The all_reports
list is used to collect all the results from all the models' training runs. The individual reports are tagged witht the model_name
, so there's no confusion about which model generated which report.
all_reports = []
callback = PrivacyMetrics(epochs_per_report, "2 Layers")
history = model_2layers.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=total_epochs,
validation_data=(x_test, y_test),
callbacks=[callback],
shuffle=True)
all_reports.extend(callback.attack_results)
Epoch 1/50 1000/1000 [==============================] - 13s 4ms/step - loss: 1.5146 - accuracy: 0.4573 - val_loss: 1.2374 - val_accuracy: 0.5660 Epoch 2/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.1933 - accuracy: 0.5811 - val_loss: 1.1873 - val_accuracy: 0.5851 Running privacy report for epoch: 2 Epoch 3/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.0694 - accuracy: 0.6246 - val_loss: 1.0526 - val_accuracy: 0.6310 Epoch 4/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9911 - accuracy: 0.6548 - val_loss: 0.9906 - val_accuracy: 0.6549 Running privacy report for epoch: 4 Epoch 5/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9348 - accuracy: 0.6743 - val_loss: 0.9712 - val_accuracy: 0.6617 Epoch 6/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8881 - accuracy: 0.6912 - val_loss: 0.9595 - val_accuracy: 0.6671 Running privacy report for epoch: 6 Epoch 7/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8495 - accuracy: 0.7024 - val_loss: 0.9574 - val_accuracy: 0.6684 Epoch 8/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8147 - accuracy: 0.7161 - val_loss: 0.9397 - val_accuracy: 0.6740 Running privacy report for epoch: 8 Epoch 9/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7820 - accuracy: 0.7263 - val_loss: 0.9325 - val_accuracy: 0.6837 Epoch 10/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7533 - accuracy: 0.7362 - val_loss: 0.9431 - val_accuracy: 0.6843 Running privacy report for epoch: 10 Epoch 11/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7169 - accuracy: 0.7477 - val_loss: 0.9310 - val_accuracy: 0.6795 Epoch 12/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6892 - accuracy: 0.7569 - val_loss: 0.9043 - val_accuracy: 0.6975 Running privacy report for epoch: 12 Epoch 13/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6677 - accuracy: 0.7663 - val_loss: 0.9401 - val_accuracy: 0.6796 Epoch 14/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6401 - accuracy: 0.7741 - val_loss: 0.9464 - val_accuracy: 0.6880 Running privacy report for epoch: 14 Epoch 15/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6177 - accuracy: 0.7821 - val_loss: 0.9359 - val_accuracy: 0.6930 Epoch 16/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5978 - accuracy: 0.7913 - val_loss: 0.9634 - val_accuracy: 0.6896 Running privacy report for epoch: 16 Epoch 17/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5745 - accuracy: 0.7973 - val_loss: 0.9941 - val_accuracy: 0.6932 Epoch 18/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5553 - accuracy: 0.8036 - val_loss: 0.9790 - val_accuracy: 0.6974 Running privacy report for epoch: 18 Epoch 19/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5376 - accuracy: 0.8103 - val_loss: 0.9989 - val_accuracy: 0.6907 Epoch 20/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5152 - accuracy: 0.8192 - val_loss: 1.0245 - val_accuracy: 0.6878 Running privacy report for epoch: 20 Epoch 21/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5048 - accuracy: 0.8208 - val_loss: 1.0223 - val_accuracy: 0.6852 Epoch 22/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4847 - accuracy: 0.8284 - val_loss: 1.0498 - val_accuracy: 0.6866 Running privacy report for epoch: 22 Epoch 23/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4722 - accuracy: 0.8325 - val_loss: 1.0610 - val_accuracy: 0.6899 Epoch 24/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4562 - accuracy: 0.8387 - val_loss: 1.0973 - val_accuracy: 0.6771 Running privacy report for epoch: 24 Epoch 25/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4392 - accuracy: 0.8447 - val_loss: 1.1141 - val_accuracy: 0.6865 Epoch 26/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4269 - accuracy: 0.8485 - val_loss: 1.1928 - val_accuracy: 0.6771 Running privacy report for epoch: 26 Epoch 27/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4135 - accuracy: 0.8533 - val_loss: 1.1945 - val_accuracy: 0.6758 Epoch 28/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4053 - accuracy: 0.8569 - val_loss: 1.2244 - val_accuracy: 0.6716 Running privacy report for epoch: 28 Epoch 29/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3880 - accuracy: 0.8611 - val_loss: 1.2362 - val_accuracy: 0.6789 Epoch 30/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3805 - accuracy: 0.8630 - val_loss: 1.2815 - val_accuracy: 0.6805 Running privacy report for epoch: 30 Epoch 31/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3756 - accuracy: 0.8656 - val_loss: 1.2973 - val_accuracy: 0.6762 Epoch 32/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3565 - accuracy: 0.8719 - val_loss: 1.3022 - val_accuracy: 0.6810 Running privacy report for epoch: 32 Epoch 33/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3494 - accuracy: 0.8749 - val_loss: 1.3248 - val_accuracy: 0.6756 Epoch 34/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3371 - accuracy: 0.8790 - val_loss: 1.3941 - val_accuracy: 0.6806 Running privacy report for epoch: 34 Epoch 35/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3248 - accuracy: 0.8839 - val_loss: 1.4391 - val_accuracy: 0.6666 Epoch 36/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3233 - accuracy: 0.8833 - val_loss: 1.5060 - val_accuracy: 0.6692 Running privacy report for epoch: 36 Epoch 37/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3109 - accuracy: 0.8882 - val_loss: 1.4624 - val_accuracy: 0.6724 Epoch 38/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3057 - accuracy: 0.8900 - val_loss: 1.5133 - val_accuracy: 0.6644 Running privacy report for epoch: 38 Epoch 39/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2929 - accuracy: 0.8949 - val_loss: 1.5465 - val_accuracy: 0.6618 Epoch 40/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2868 - accuracy: 0.8970 - val_loss: 1.5882 - val_accuracy: 0.6696 Running privacy report for epoch: 40 Epoch 41/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2778 - accuracy: 0.8982 - val_loss: 1.6317 - val_accuracy: 0.6713 Epoch 42/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2782 - accuracy: 0.8999 - val_loss: 1.6993 - val_accuracy: 0.6630 Running privacy report for epoch: 42 Epoch 43/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2675 - accuracy: 0.9039 - val_loss: 1.7294 - val_accuracy: 0.6645 Epoch 44/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2587 - accuracy: 0.9068 - val_loss: 1.7614 - val_accuracy: 0.6561 Running privacy report for epoch: 44 Epoch 45/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2528 - accuracy: 0.9076 - val_loss: 1.7835 - val_accuracy: 0.6564 Epoch 46/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2410 - accuracy: 0.9129 - val_loss: 1.8550 - val_accuracy: 0.6648 Running privacy report for epoch: 46 Epoch 47/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2409 - accuracy: 0.9106 - val_loss: 1.8705 - val_accuracy: 0.6572 Epoch 48/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2328 - accuracy: 0.9146 - val_loss: 1.9110 - val_accuracy: 0.6593 Running privacy report for epoch: 48 Epoch 49/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2299 - accuracy: 0.9164 - val_loss: 1.9468 - val_accuracy: 0.6634 Epoch 50/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2250 - accuracy: 0.9178 - val_loss: 2.0154 - val_accuracy: 0.6610 Running privacy report for epoch: 50
callback = PrivacyMetrics(epochs_per_report, "3 Layers")
history = model_3layers.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=total_epochs,
validation_data=(x_test, y_test),
callbacks=[callback],
shuffle=True)
all_reports.extend(callback.attack_results)
Epoch 1/50 1000/1000 [==============================] - 4s 4ms/step - loss: 1.6838 - accuracy: 0.3772 - val_loss: 1.4805 - val_accuracy: 0.4552 Epoch 2/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.3938 - accuracy: 0.4969 - val_loss: 1.3291 - val_accuracy: 0.5276 Running privacy report for epoch: 2 Epoch 3/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.2564 - accuracy: 0.5510 - val_loss: 1.2313 - val_accuracy: 0.5627 Epoch 4/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.1610 - accuracy: 0.5884 - val_loss: 1.1251 - val_accuracy: 0.6039 Running privacy report for epoch: 4 Epoch 5/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.1034 - accuracy: 0.6105 - val_loss: 1.1168 - val_accuracy: 0.6063 Epoch 6/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.0476 - accuracy: 0.6319 - val_loss: 1.0716 - val_accuracy: 0.6248 Running privacy report for epoch: 6 Epoch 7/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.0107 - accuracy: 0.6461 - val_loss: 1.0264 - val_accuracy: 0.6407 Epoch 8/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9731 - accuracy: 0.6597 - val_loss: 1.0216 - val_accuracy: 0.6447 Running privacy report for epoch: 8 Epoch 9/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9437 - accuracy: 0.6712 - val_loss: 1.0016 - val_accuracy: 0.6467 Epoch 10/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9191 - accuracy: 0.6790 - val_loss: 0.9845 - val_accuracy: 0.6553 Running privacy report for epoch: 10 Epoch 11/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8923 - accuracy: 0.6877 - val_loss: 0.9560 - val_accuracy: 0.6670 Epoch 12/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8722 - accuracy: 0.6959 - val_loss: 0.9518 - val_accuracy: 0.6686 Running privacy report for epoch: 12 Epoch 13/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8495 - accuracy: 0.7029 - val_loss: 0.9427 - val_accuracy: 0.6787 Epoch 14/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8305 - accuracy: 0.7116 - val_loss: 0.9247 - val_accuracy: 0.6814 Running privacy report for epoch: 14 Epoch 15/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8164 - accuracy: 0.7157 - val_loss: 0.9263 - val_accuracy: 0.6797 Epoch 16/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7973 - accuracy: 0.7220 - val_loss: 0.9151 - val_accuracy: 0.6850 Running privacy report for epoch: 16 Epoch 17/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7830 - accuracy: 0.7277 - val_loss: 0.9139 - val_accuracy: 0.6842 Epoch 18/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7704 - accuracy: 0.7294 - val_loss: 0.9384 - val_accuracy: 0.6774 Running privacy report for epoch: 18 Epoch 19/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7539 - accuracy: 0.7366 - val_loss: 0.9508 - val_accuracy: 0.6761 Epoch 20/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7445 - accuracy: 0.7412 - val_loss: 0.9108 - val_accuracy: 0.6908 Running privacy report for epoch: 20 Epoch 21/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7343 - accuracy: 0.7418 - val_loss: 0.9161 - val_accuracy: 0.6855 Epoch 22/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7213 - accuracy: 0.7458 - val_loss: 0.9754 - val_accuracy: 0.6724 Running privacy report for epoch: 22 Epoch 23/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7133 - accuracy: 0.7487 - val_loss: 0.8936 - val_accuracy: 0.6984 Epoch 24/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7072 - accuracy: 0.7504 - val_loss: 0.8872 - val_accuracy: 0.7002 Running privacy report for epoch: 24 Epoch 25/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6932 - accuracy: 0.7570 - val_loss: 0.9732 - val_accuracy: 0.6769 Epoch 26/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6883 - accuracy: 0.7578 - val_loss: 0.9332 - val_accuracy: 0.6798 Running privacy report for epoch: 26 Epoch 27/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6766 - accuracy: 0.7614 - val_loss: 0.9069 - val_accuracy: 0.6998 Epoch 28/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6656 - accuracy: 0.7662 - val_loss: 0.8879 - val_accuracy: 0.7011 Running privacy report for epoch: 28 Epoch 29/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6594 - accuracy: 0.7674 - val_loss: 0.8988 - val_accuracy: 0.7037 Epoch 30/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6499 - accuracy: 0.7700 - val_loss: 0.9086 - val_accuracy: 0.7001 Running privacy report for epoch: 30 Epoch 31/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6420 - accuracy: 0.7746 - val_loss: 0.8985 - val_accuracy: 0.7034 Epoch 32/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6354 - accuracy: 0.7742 - val_loss: 0.9089 - val_accuracy: 0.7018 Running privacy report for epoch: 32 Epoch 33/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6293 - accuracy: 0.7759 - val_loss: 0.9258 - val_accuracy: 0.6947 Epoch 34/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6192 - accuracy: 0.7851 - val_loss: 0.9326 - val_accuracy: 0.6976 Running privacy report for epoch: 34 Epoch 35/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6157 - accuracy: 0.7831 - val_loss: 0.9240 - val_accuracy: 0.6973 Epoch 36/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6063 - accuracy: 0.7853 - val_loss: 0.9504 - val_accuracy: 0.6971 Running privacy report for epoch: 36 Epoch 37/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6036 - accuracy: 0.7867 - val_loss: 0.9025 - val_accuracy: 0.7094 Epoch 38/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5958 - accuracy: 0.7877 - val_loss: 0.9290 - val_accuracy: 0.6976 Running privacy report for epoch: 38 Epoch 39/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5900 - accuracy: 0.7919 - val_loss: 0.9379 - val_accuracy: 0.6963 Epoch 40/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5856 - accuracy: 0.7928 - val_loss: 0.9911 - val_accuracy: 0.6896 Running privacy report for epoch: 40 Epoch 41/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5772 - accuracy: 0.7944 - val_loss: 0.9093 - val_accuracy: 0.7059 Epoch 42/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5752 - accuracy: 0.7940 - val_loss: 0.9275 - val_accuracy: 0.7061 Running privacy report for epoch: 42 Epoch 43/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5645 - accuracy: 0.7998 - val_loss: 0.9208 - val_accuracy: 0.7025 Epoch 44/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5632 - accuracy: 0.8000 - val_loss: 0.9746 - val_accuracy: 0.6976 Running privacy report for epoch: 44 Epoch 45/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5557 - accuracy: 0.8045 - val_loss: 0.9211 - val_accuracy: 0.7098 Epoch 46/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5469 - accuracy: 0.8073 - val_loss: 0.9357 - val_accuracy: 0.7055 Running privacy report for epoch: 46 Epoch 47/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5438 - accuracy: 0.8062 - val_loss: 0.9495 - val_accuracy: 0.7025 Epoch 48/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5437 - accuracy: 0.8069 - val_loss: 0.9509 - val_accuracy: 0.6994 Running privacy report for epoch: 48 Epoch 49/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5414 - accuracy: 0.8066 - val_loss: 0.9780 - val_accuracy: 0.6939 Epoch 50/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5321 - accuracy: 0.8108 - val_loss: 1.0109 - val_accuracy: 0.6846 Running privacy report for epoch: 50
Epoch Plots
You can visualize how privacy risks happen as you train models by probing the model periodically (e.g. every 5 epochs), you can pick the point in time with the best performance / privacy trade-off.
Use the TF Privacy Membership Inference Attack module to generate AttackResults
. These AttackResults
get combined into an AttackResultsCollection
. The TF Privacy Report is designed to analyze the provided AttackResultsCollection
.
results = AttackResultsCollection(all_reports)
privacy_metrics = (PrivacyMetric.AUC, PrivacyMetric.ATTACKER_ADVANTAGE)
epoch_plot = privacy_report.plot_by_epochs(
results, privacy_metrics=privacy_metrics)
See that as a rule, privacy vulnerability tends to increase as the number of epochs goes up. This is true across model variants as well as different attacker types.
Two layer models (with fewer convolutional layers) are generally more vulnerable than their three layer model counterparts.
Now let's see how model performance changes with respect to privacy risk.
Privacy vs Utility
privacy_metrics = (PrivacyMetric.AUC, PrivacyMetric.ATTACKER_ADVANTAGE)
utility_privacy_plot = privacy_report.plot_privacy_vs_accuracy(
results, privacy_metrics=privacy_metrics)
for axis in utility_privacy_plot.axes:
axis.set_xlabel('Validation accuracy')
Three layer models (perhaps due to too many parameters) only achieve a train accuracy of 0.85. The two layer models achieve roughly equal performance for that level of privacy risk but they continue to get better accuracy.
You can also see how the line for two layer models gets steeper. This means that additional marginal gains in train accuracy come at an expense of vast privacy vulnerabilities.
This is the end of the tutorial. Feel free to analyze your own results.