TensorFlow text processing tutorials
Stay organized with collections
Save and categorize content based on your preferences.
The TensorFlow text processing tutorials provide step-by-step instructions for
solving common text and natural language processing (NLP) problems.
TensorFlow provides two solutions for text and natural language processing:
KerasNLP and TensorFlow Text. KerasNLP is a high-level NLP library that includes
all the latest Transformer-based models as well as lower-level tokenization
utilities. It's the recommended solution for most NLP use cases.
If you need access to lower-level text processing tools, you can use
TensorFlow Text. TensorFlow Text provides a collection of ops and libraries to
help you work with input in text form such as raw text strings or documents.
KerasNLP
- Getting Started with KerasNLP:
Learn KerasNLP by performing sentiment analysis at progressive levels of
complexity, from using a pre-trained model to building your own Transformer
from scratch.
Text generation
Text classification
- Classify text with BERT:
Fine-tune BERT to perform sentiment analysis on a dataset of plain-text IMDb
movie reviews.
- Text classification with an RNN:
Train an RNN to perform sentiment analysis on IMDb movie reviews.
- TF.Text Metrics:
Learn about the metrics available through TensorFlow Text. The library
contains implementations of text-similarity metrics such as ROUGE-L, which can
be used for automatic evaluation of text generation models.
NLP with BERT
Embeddings
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-07-27 UTC.
[null,null,["Last updated 2023-07-27 UTC."],[],[],null,["# TensorFlow text processing tutorials\n\n\u003cbr /\u003e\n\nThe TensorFlow text processing tutorials provide step-by-step instructions for\nsolving common text and natural language processing (NLP) problems.\n\nTensorFlow provides two solutions for text and natural language processing:\nKerasNLP and TensorFlow Text. KerasNLP is a high-level NLP library that includes\nall the latest Transformer-based models as well as lower-level tokenization\nutilities. It's the recommended solution for most NLP use cases.\n\nIf you need access to lower-level text processing tools, you can use\nTensorFlow Text. TensorFlow Text provides a collection of ops and libraries to\nhelp you work with input in text form such as raw text strings or documents.\n\nKerasNLP\n--------\n\n- [Getting Started with KerasNLP](https://keras.io/guides/keras_nlp/getting_started/): Learn KerasNLP by performing sentiment analysis at progressive levels of complexity, from using a pre-trained model to building your own Transformer from scratch.\n\nText generation\n---------------\n\n- [Text generation with an RNN](https://tensorflow.org/text/tutorials/text_generation): Generate text using a character-based RNN and a dataset of Shakespeare's writing.\n- [Neural machine translation with attention](https://tensorflow.org/text/tutorials/nmt_with_attention): Train a sequence-to-sequence (seq2seq) model for Spanish-to-English translation.\n- [Neural machine translation with a Transformer and Keras](https://tensorflow.org/text/tutorials/transformer): Create and train a sequence-to-sequence Transformer model to translate Portuguese into English.\n- [Image captioning with visual attention](https://tensorflow.org/text/tutorials/image_captioning): Generate image captions using a Transformer-decoder model built with attention layers.\n\nText classification\n-------------------\n\n- [Classify text with BERT](https://tensorflow.org/text/tutorials/classify_text_with_bert): Fine-tune BERT to perform sentiment analysis on a dataset of plain-text IMDb movie reviews.\n- [Text classification with an RNN](https://tensorflow.org/text/tutorials/text_classification_rnn): Train an RNN to perform sentiment analysis on IMDb movie reviews.\n- [TF.Text Metrics](https://tensorflow.org/text/tutorials/text_similarity): Learn about the metrics available through TensorFlow Text. The library contains implementations of text-similarity metrics such as ROUGE-L, which can be used for automatic evaluation of text generation models.\n\nNLP with BERT\n-------------\n\n- [Solve GLUE tasks using BERT on TPU](https://tensorflow.org/text/tutorials/bert_glue): Learn how to fine-tune BERT for tasks from the [GLUE benchmark](https://gluebenchmark.com/).\n- [Fine-tuning a BERT model](https://tensorflow.org/tfmodels/nlp/fine_tune_bert): Fine-tune a BERT model using [TensorFlow Model Garden](https://github.com/tensorflow/models).\n- [Uncertainty-aware Deep Language Learning with BERT-SNGP](https://tensorflow.org/text/tutorials/uncertainty_quantification_with_sngp_bert): Apply [SNGP](https://arxiv.org/abs/2006.10108) to a natural language understanding (NLU) task. Building on a BERT encoder, you'll improve the NLU model's ability to detect out-of-scope queries.\n\nEmbeddings\n----------\n\n- [Word embeddings](https://tensorflow.org/text/guide/word_embeddings): Train your own word embeddings using a simple Keras model for a sentiment classification task, and then visualize them using the [Embedding Projector](https://www.tensorflow.org/tensorboard/tensorboard_projector_plugin).\n- [Warm-start embedding layer matrix](https://tensorflow.org/text/tutorials/warmstart_embedding_matrix): Learn how to \"warm-start\" training for a text sentiment classification model.\n- [word2vec](https://tensorflow.org/text/tutorials/word2vec): Train a word2vec model on a small dataset and visualize the trained embeddings in the [Embedding Projector](https://www.tensorflow.org/tensorboard/tensorboard_projector_plugin)."]]