Weź udział w sympozjum Women in ML 7 grudnia Zarejestruj się teraz

Konwertuj modele TensorFlow

Ta strona opisuje, jak przekonwertować model TensorFlow na model TensorFlow Lite (zoptymalizowany format FlatBuffer identyfikowany przez rozszerzenie pliku .tflite ) przy użyciu konwertera TensorFlow Lite.

Przebieg konwersji

Poniższy diagram ilustruje obieg pracy na wysokim poziomie podczas konwersji modelu:

Przepływ pracy konwertera TFLite

Rysunek 1. Obieg pracy konwertera.

Możesz przekonwertować swój model, korzystając z jednej z następujących opcji:

  1. Python API ( zalecane ): Pozwala to zintegrować konwersję z procesem rozwoju, zastosować optymalizacje, dodać metadane i wiele innych zadań, które upraszczają proces konwersji.
  2. Wiersz poleceń : obsługuje tylko podstawową konwersję modelu.

API Pythona

Kod pomocniczy: Aby dowiedzieć się więcej o interfejsie API konwertera TensorFlow Lite, uruchom print(help(tf.lite.TFLiteConverter)) .

Przekonwertuj model TensorFlow za pomocą tf.lite.TFLiteConverter . Model TensorFlow jest przechowywany w formacie SavedModel i jest generowany przy użyciu wysokopoziomowych interfejsów API tf.keras.* (model Keras) lub niskopoziomowych interfejsów API tf.* (z których generujesz konkretne funkcje). W rezultacie masz następujące trzy opcje (przykłady znajdują się w kilku następnych sekcjach):

Poniższy przykład pokazuje, jak przekonwertować SavedModel na model TensorFlow Lite.

import tensorflow as tf

# Convert the model
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) # path to the SavedModel directory
tflite_model = converter.convert()

# Save the model.
with open('model.tflite', 'wb') as f:
  f.write(tflite_model)

Konwersja modelu Kerasa

Poniższy przykład pokazuje, jak przekonwertować model Keras na model TensorFlow Lite.

import tensorflow as tf

# Create a model using high-level tf.keras.* APIs
model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(units=1, input_shape=[1]),
    tf.keras.layers.Dense(units=16, activation='relu'),
    tf.keras.layers.Dense(units=1)
])
model.compile(optimizer='sgd', loss='mean_squared_error') # compile the model
model.fit(x=[-1, 0, 1], y=[-3, -1, 1], epochs=5) # train the model
# (to generate a SavedModel) tf.saved_model.save(model, "saved_model_keras_dir")

# Convert the model.
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()

# Save the model.
with open('model.tflite', 'wb') as f:
  f.write(tflite_model)

Konwertuj konkretne funkcje

Poniższy przykład pokazuje, jak przekonwertować konkretne funkcje na model TensorFlow Lite.

import tensorflow as tf

# Create a model using low-level tf.* APIs
class Squared(tf.Module):
  @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.float32)])
  def __call__(self, x):
    return tf.square(x)
model = Squared()
# (ro run your model) result = Squared(5.0) # This prints "25.0"
# (to generate a SavedModel) tf.saved_model.save(model, "saved_model_tf_dir")
concrete_func = model.__call__.get_concrete_function()

# Convert the model.

converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func],
                                                            model)
tflite_model = converter.convert()

# Save the model.
with open('model.tflite', 'wb') as f:
  f.write(tflite_model)

Inne funkcje

  • Zastosuj optymalizacje . Powszechnie stosowaną optymalizacją jest kwantyzacja po treningu , która może jeszcze bardziej zmniejszyć opóźnienie i rozmiar modelu przy minimalnej utracie dokładności.

  • Dodaj metadane , co ułatwia tworzenie kodu opakowania specyficznego dla platformy podczas wdrażania modeli na urządzeniach.

Błędy konwersji

Poniżej przedstawiono typowe błędy konwersji i ich rozwiązania:

  • Błąd: Some ops are not supported by the native TFLite runtime, you can enable TF kernels fallback using TF Select. See instructions: <a href="https://www.tensorflow.org/lite/guide/ops_select">https://www.tensorflow.org/lite/guide/ops_select</a> TF Select ops: ..., .., ...

    Rozwiązanie: Błąd pojawia się, ponieważ twój model ma operacje TF, które nie mają odpowiedniej implementacji TFLite. Możesz rozwiązać ten problem, używając TF op w modelu TFLite (zalecane). Jeśli chcesz wygenerować model tylko z opcjami TFLite, możesz dodać prośbę o brakującą operację TFLite w numerze #21526 Github (zostaw komentarz, jeśli twoja prośba nie została jeszcze wspomniana) lub samodzielnie utworzyć operację TFLite .

  • Błąd: .. is neither a custom op nor a flex op

    Rozwiązanie: Jeśli ta operacja TF to:

Narzędzie wiersza poleceń

Jeśli zainstalowałeś TensorFlow 2.x z pip , użyj polecenia tflite_convert . Aby wyświetlić wszystkie dostępne flagi, użyj następującego polecenia:

$ tflite_convert --help

`--output_file`. Type: string. Full path of the output file.
`--saved_model_dir`. Type: string. Full path to the SavedModel directory.
`--keras_model_file`. Type: string. Full path to the Keras H5 model file.
`--enable_v1_converter`. Type: bool. (default False) Enables the converter and flags used in TF 1.x instead of TF 2.x.

You are required to provide the `--output_file` flag and either the `--saved_model_dir` or `--keras_model_file` flag.

Jeśli masz pobrane źródło TensorFlow 2.x i chcesz uruchomić konwerter z tego źródła bez budowania i instalowania pakietu, możesz zamienić ' tflite_convert ' na ' bazel run tensorflow/lite/python:tflite_convert -- ' w poleceniu.

Konwersja zapisanego modelu

tflite_convert \
  --saved_model_dir=/tmp/mobilenet_saved_model \
  --output_file=/tmp/mobilenet.tflite

Konwersja modelu Keras H5

tflite_convert \
  --keras_model_file=/tmp/mobilenet_keras_model.h5 \
  --output_file=/tmp/mobilenet.tflite

Następne kroki

Użyj interpretera TensorFlow Lite , aby uruchomić wnioskowanie na urządzeniu klienckim (np. mobilnym, osadzonym).