운영
mhlo.abs
(mhlo::AbsOp)
복근 수술
통사론:
operation ::= `mhlo.abs` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
텐서에 대해 요소별 절대 연산을 수행하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs
예:
%result = mhlo.abs %operand : tensor<3xi32>
특성: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
operand | 2/4/8/16/32/64비트 부호 없는 정수 또는 4/6/8/16/32/64비트 부동 소수점 또는 32/64비트 부동 소수점 요소를 갖는 복소수 유형 또는 2/4/8/16/32비트 균일 양자화 부호 있는 정수 또는 2/4/8/16/32비트 균일 양자화 축당 부호 있는 정수 또는 2/4/8/16/32비트 균일 양자화 부호 없는 정수 또는 2/4/8/16/32비트 균일 양자화 축당 부호 없는 정수 값의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
result | 2/4/8/16/32/64비트 부호 없는 정수 또는 4/6/8/16/32/64비트 부동 소수점 또는 2/4/8/16/32비트 균일 양자화 부호 있는 정수 또는 2/4/8/16/32비트 균일 양자화 축당 부호 있는 정수 또는 2/4/8/16/32비트 균일 양자화 부호 없는 정수 또는 2/4/8/16/32비트 균일 양자화 축당 부호 없는 정수 값의 순위가 매겨진 텐서 |
mhlo.acos
(mhlo::AcosOp)
Acos 작업
통사론:
operation ::= `mhlo.acos` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
텐서에 대해 요소별 acos 연산을 수행하고 result
텐서를 생성합니다.
예:
%result = mhlo.acos %operand : tensor<2x2xf32>
특성: CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: InferShapedTypeOpInterface
, InferTypeOpInterface
피연산자:
피연산자 | 설명 |
---|---|
operand | 32/64비트 float 요소 값을 갖는 4/6/8/16/32/64비트 float 또는 복소수 유형의 텐서 |
결과:
결과 | 설명 |
---|---|
result | 32/64비트 float 요소 값을 갖는 4/6/8/16/32/64비트 float 또는 복소수 유형의 텐서 |
mhlo.acosh
(mhlo::AcoshOp)
아코시 작전
통사론:
operation ::= `mhlo.acosh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
텐서에 대해 요소별 아코쉬 연산을 수행하고 result
텐서를 생성합니다.
예:
%result = mhlo.acosh %operand : tensor<2x2xf32>
특성: CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: InferShapedTypeOpInterface
, InferTypeOpInterface
피연산자:
피연산자 | 설명 |
---|---|
operand | 32/64비트 float 요소 값을 갖는 4/6/8/16/32/64비트 float 또는 복소수 유형의 텐서 |
결과:
결과 | 설명 |
---|---|
result | 32/64비트 float 요소 값을 갖는 4/6/8/16/32/64비트 float 또는 복소수 유형의 텐서 |
mhlo.add
(mhlo::AddOp)
작업 추가
통사론:
operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
두 텐서 lhs
와 rhs
의 요소별 추가를 수행하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add
예:
%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>
특성: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
lhs | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
rhs | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
result | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
mhlo.add_dependency
(mhlo::AddDependencyOp)
AddDependency 작업
통사론:
operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)
이 작업은 XLA 컴파일러에만 적용되므로 아직 사양이 없습니다.
비공식적으로 이 연산은 두 개의 피연산자, 즉 데이터 피연산자와 토큰을 사용합니다. 연산의 출력은 데이터 피연산자입니다. AfterAll과 함께 사용하면 이 연산을 통해 부작용이 없는 연산(토큰 값을 생성하지 않는 연산)의 순서를 지정할 수 있습니다.
예:
%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>
특성: AlwaysSpeculatableImplTrait
인터페이스: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소를 포함하는 복소수 유형의 순위가 매겨진 텐서 또는 텐서당 정수 양자화 값 또는 축당 정수 양자화 값의 순위가 매겨진 텐서 또는 토큰 또는 stablehlo 토큰 |
token | 토큰 또는 스테이블홀 토큰 |
결과:
결과 | 설명 |
---|---|
output | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소를 포함하는 복소수 유형의 순위가 매겨진 텐서 또는 텐서당 정수 양자화 값 또는 축당 정수 양자화 값의 순위가 매겨진 텐서 또는 토큰 또는 stablehlo 토큰 |
mhlo.after_all
(mhlo::AfterAllOp)
AfterAll 작업
통사론:
operation ::= `mhlo.after_all` $inputs attr-dict
`:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))
result
에 의존하는 모든 작업보다 먼저 inputs
생성하는 작업이 실행되도록 보장합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
예:
%result = mhlo.after_all %input0, %input1 : !mhlo.token
특성: AlwaysSpeculatableImplTrait
인터페이스: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
inputs | 토큰의 가변성 |
결과:
결과 | 설명 |
---|---|
result | 토큰 |
mhlo.all_gather
(mhlo::AllGatherOp)
AllGather 작업
프로세스 그리드의 각 프로세스 그룹 내에서, 각 프로세스의 피연산자 텐서 값을 all_gather_dim
따라 연결하여 결과 텐서를 생성합니다. computation
operands
의 각 피연산자에 대해 개별적으로 적용되어 피연산자당 하나의 결과를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather
예:
%result = "mhlo.all_gather"(%operand) {
all_gather_dim = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
// use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>
특성: SameOperandsAndResultElementType
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
all_gather_dim | ::mlir::정수 속성 | 값이 음수가 아닌 64비트 무부호 정수 속성 |
replica_groups | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
channel_handle | ::mlir::mhlo::채널 핸들 속성 | 두 개의 64비트 정수 'handle'과 'type' |
use_global_device_ids | ::mlir::유닛 속성 | 단위 속성 |
피연산자:
피연산자 | 설명 |
---|---|
operands | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 복소수 유형의 순위가 매겨진 텐서의 가변수 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 복소수 유형의 순위가 매겨진 텐서의 가변수 |
mhlo.all_reduce
(mhlo::AllReduceOp)
AllReduce 작업
프로세스 그리드의 각 프로세스 그룹 내에서, 각 프로세스의 피연산자 텐서 값에 축소 함수 computation
적용하여 결과 텐서를 생성합니다. 이 computation
operands
의 각 피연산자에 대해 개별적으로 적용되어 피연산자당 하나의 결과를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
예:
%result = "mhlo.all_reduce"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg1, %arg2 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>
특성: InferTensorType
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
인터페이스: InferShapedTypeOpInterface
, InferTypeOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
channel_handle | ::mlir::mhlo::채널 핸들 속성 | 두 개의 64비트 정수 'handle'과 'type' |
use_global_device_ids | ::mlir::유닛 속성 | 단위 속성 |
피연산자:
피연산자 | 설명 |
---|---|
operands | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 복소수 유형의 순위가 매겨진 텐서의 가변수 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 복소수 유형의 순위가 매겨진 텐서의 가변수 |
mhlo.all_to_all
(mhlo::AllToAllOp)
AllToAll 작업
프로세스 그리드의 각 프로세스 그룹 내에서 operand
텐서의 값을 split_dimension
에 따라 부분으로 분할하고, 분할된 부분을 프로세스 사이에 분산시키고, 분산된 부분을 concat_dimension
에 따라 연결하여 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all
예:
%result = "mhlo.all_to_all"(%operand) {
split_dimension = 1 : i64,
concat_dimension = 0 : i64,
split_count = 2 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>
특성: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsElementType
, SameOperandsShape
, SameVariadicOperandSize
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
split_dimension | ::mlir::정수 속성 | 값이 음수가 아닌 64비트 무부호 정수 속성 |
concat_dimension | ::mlir::정수 속성 | 값이 음수가 아닌 64비트 무부호 정수 속성 |
split_count | ::mlir::정수 속성 | 값이 양수인 64비트 부호 없는 정수 속성 |
replica_groups | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
channel_handle | ::mlir::mhlo::채널 핸들 속성 | 두 개의 64비트 정수 'handle'과 'type' |
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 복소수 유형의 순위가 매겨진 텐서의 가변수 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 복소수 유형의 순위가 매겨진 텐서의 가변수 |
mhlo.and
(mhlo::AndOp)
그리고 운영
통사론:
operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
두 텐서 lhs
와 rhs
의 요소별 AND를 수행하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and
예:
%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>
특성: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
lhs | bool 또는 2/4/8/16/32/64비트 정수 값의 순위가 매겨진 텐서 |
rhs | bool 또는 2/4/8/16/32/64비트 정수 값의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
result | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
mhlo.asin
(mhlo::AsinOp)
아신 작전
통사론:
operation ::= `mhlo.asin` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
텐서에 대해 요소별 asin 연산을 수행하고 result
텐서를 생성합니다.
예:
%result = mhlo.asin %operand : tensor<2x2xf32>
특성: CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: InferShapedTypeOpInterface
, InferTypeOpInterface
피연산자:
피연산자 | 설명 |
---|---|
operand | 32/64비트 float 요소 값을 갖는 4/6/8/16/32/64비트 float 또는 복소수 유형의 텐서 |
결과:
결과 | 설명 |
---|---|
result | 32/64비트 float 요소 값을 갖는 4/6/8/16/32/64비트 float 또는 복소수 유형의 텐서 |
mhlo.async_done
(mhlo::AsyncDoneOp)
AsyncDone 작업
이 작업은 XLA 컴파일러에만 적용되므로 아직 사양이 없습니다.
비공식적으로, 이 연산은 비동기 계산이 끝날 때까지 차단됩니다. 비동기 계산의 최종 결과를 반환합니다.
자세한 내용은 AsyncStart에 대한 설명서를 참조하세요.
인터페이스: InferTypeOpInterface
피연산자:
피연산자 | 설명 |
---|---|
bundle | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값 또는 토큰 또는 stablehlo 토큰 값의 순위가 매겨진 텐서의 조합을 포함하는 async_bundle |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값 또는 토큰 또는 stablehlo 토큰 또는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 값의 순위가 매겨진 텐서 또는 텐서당 정수 양자화 값의 순위가 매겨진 텐서 또는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 값의 memref의 조합을 갖는 중첩 튜플 또는 축별 정수 양자화 값 또는 토큰 값의 순위가 매겨진 텐서 |
mhlo.async_start
(mhlo::AsyncStartOp)
AsyncStart 작업
이 작업은 XLA 컴파일러에만 적용되므로 아직 사양이 없습니다.
비공식적으로 이 작업은 비동기 계산을 시작합니다.
이것은 비동기 대기(예: DMA)와 스레드 내 계산을 모두 포함하는 함수가 있는 경우 사용됩니다. 예를 들어, 함수는 계산, DMA, 다른 계산, 두 번째 DMA 및 최종 계산으로 구성될 수 있습니다. 이는 async_start 다음에 async_update와 async_done이 오는 것으로 표현됩니다. async_start는 스레드에서 첫 번째 계산을 수행한 다음 DMA를 시작합니다. async_update는 DMA가 아직 완료되지 않은 경우 완료될 때까지 기다린 다음 함수에서 두 번째 계산을 실행하고 두 번째 DMA를 시작합니다. 마지막으로 async_done은 이 마지막 DMA를 기다린 다음 스레드에서 실행해야 하는 마지막 계산을 실행하고 해당 최종 계산의 결과를 반환합니다.
operands
계산에 직접 전달됩니다. called_computation
비동기적으로 실행될 함수입니다. execution_thread
실행될 스레드의 이름입니다. 메인 스레드는 "main"이라고 합니다. 모든 스레드에는 이름이 있습니다.
비동기 작업 간에 필요한 모든 상태를 반환합니다. 버퍼 할당 후 반환 값은 비동기 작업에서 필요하거나 편집한 입력, 결과 및 스크래치패드를 저장하는 데 필요한 공간을 나타냅니다.
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
called_computation | ::mlir::플랫심볼참조 속성 | 플랫 심볼 참조 속성 |
execution_thread | ::mlir::문자열 속성 | 문자열 속성 |
피연산자:
피연산자 | 설명 |
---|---|
inputs | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값 또는 토큰 또는 stablehlo 토큰 또는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 값의 순위가 매겨진 텐서 또는 텐서당 정수 양자화 값의 순위가 매겨진 텐서 또는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 값의 memref의 조합을 갖는 중첩 튜플 또는 축별 정수 양자화 값 또는 토큰 값의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값 또는 토큰 또는 stablehlo 토큰 값의 순위가 매겨진 텐서의 조합을 포함하는 async_bundle |
mhlo.async_update
(mhlo::AsyncUpdateOp)
AsyncUpdate 작업
이 작업은 XLA 컴파일러에만 적용되므로 아직 사양이 없습니다.
비공식적으로, 이 연산은 동기화 장벽이 발생할 때까지 비동기 계산을 차단합니다. 이 연산은 해당 계산을 수행한 후 bundle
반환합니다.
자세한 내용은 AsyncStart에 대한 설명서를 참조하세요.
인터페이스: InferTypeOpInterface
피연산자:
피연산자 | 설명 |
---|---|
bundle | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값 또는 토큰 또는 stablehlo 토큰 값의 순위가 매겨진 텐서의 조합을 포함하는 async_bundle |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값 또는 토큰 또는 stablehlo 토큰 값의 순위가 매겨진 텐서의 조합을 포함하는 async_bundle |
mhlo.atan2
(mhlo::Atan2Op)
Atan2 작동
통사론:
operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
lhs
및 rhs
텐서에 대해 요소별 atan2 연산을 수행하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2
예:
%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>
특성: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
lhs | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 복소수 유형의 순위가 매겨진 텐서 |
rhs | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 복소수 유형의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
result | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 복소수 유형의 순위가 매겨진 텐서 |
mhlo.atanh
(mhlo::AtanhOp)
아탄 작전
통사론:
operation ::= `mhlo.atanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
텐서에 대해 요소별 atanh 연산을 수행하고 result
텐서를 생성합니다.
예:
%result = mhlo.atanh %operand : tensor<2x2xf32>
특성: CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: InferShapedTypeOpInterface
, InferTypeOpInterface
피연산자:
피연산자 | 설명 |
---|---|
operand | 32/64비트 float 요소 값을 갖는 4/6/8/16/32/64비트 float 또는 복소수 유형의 텐서 |
결과:
결과 | 설명 |
---|---|
result | 32/64비트 float 요소 값을 갖는 4/6/8/16/32/64비트 float 또는 복소수 유형의 텐서 |
mhlo.batch_norm_grad
(mhlo::BatchNormGradOp)
BatchNormGrad 작업
grad_output
에서 역전파되는 BatchNormTrainingOp의 여러 입력에 대한 기울기를 계산하고 grad_operand
, grad_scale
및 grad_offset
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad
예:
%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
특성: AlwaysSpeculatableImplTrait
, InferTensorType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
epsilon | ::mlir::FloatAttr | 32비트 부동 소수점 속성 |
feature_index | ::mlir::정수 속성 | 값이 음수가 아닌 64비트 무부호 정수 속성 |
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 값의 순위가 매겨진 텐서 |
scale | 4/6/8/16/32/64비트 부동 소수점 값의 1D 텐서 |
mean | 4/6/8/16/32/64비트 부동 소수점 값의 1D 텐서 |
variance | 4/6/8/16/32/64비트 부동 소수점 값의 1D 텐서 |
grad_output | 4/6/8/16/32/64비트 부동 소수점 값의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
grad_operand | 4/6/8/16/32/64비트 부동 소수점 값의 순위가 매겨진 텐서 |
grad_scale | 4/6/8/16/32/64비트 부동 소수점 값의 1D 텐서 |
grad_offset | 4/6/8/16/32/64비트 부동 소수점 값의 1D 텐서 |
mhlo.batch_norm_inference
(mhlo::BatchNormInferenceOp)
BatchNormInference 작업
feature_index
차원을 제외한 모든 차원에서 operand
텐서를 정규화하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference
예:
%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>
특성: AlwaysSpeculatableImplTrait
, InferTensorType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
epsilon | ::mlir::FloatAttr | 32비트 부동 소수점 속성 |
feature_index | ::mlir::정수 속성 | 값이 음수가 아닌 64비트 무부호 정수 속성 |
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 값의 순위가 매겨진 텐서 |
scale | 4/6/8/16/32/64비트 부동 소수점 값의 1D 텐서 |
offset | 4/6/8/16/32/64비트 부동 소수점 값의 1D 텐서 |
mean | 4/6/8/16/32/64비트 부동 소수점 값의 1D 텐서 |
variance | 4/6/8/16/32/64비트 부동 소수점 값의 1D 텐서 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 값의 순위가 매겨진 텐서 |
mhlo.batch_norm_training
(mhlo::BatchNormTrainingOp)
BatchNormTraining 작업
각 feature_index
차원의 기능에 대해 배치 및 공간 차원에 걸쳐 평균과 분산을 계산하고 operand
텐서를 정규화하여 output
, batch_mean
및 batch_var
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training
예:
%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
특성: AlwaysSpeculatableImplTrait
, InferTensorType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
epsilon | ::mlir::FloatAttr | 32비트 부동 소수점 속성 |
feature_index | ::mlir::정수 속성 | 값이 음수가 아닌 64비트 무부호 정수 속성 |
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 값의 순위가 매겨진 텐서 |
scale | 4/6/8/16/32/64비트 부동 소수점 값의 1D 텐서 |
offset | 4/6/8/16/32/64비트 부동 소수점 값의 1D 텐서 |
결과:
결과 | 설명 |
---|---|
output | 4/6/8/16/32/64비트 부동 소수점 값의 순위가 매겨진 텐서 |
batch_mean | 4/6/8/16/32/64비트 부동 소수점 값의 1D 텐서 |
batch_var | 4/6/8/16/32/64비트 부동 소수점 값의 1D 텐서 |
mhlo.bitcast
(mhlo::BitcastOp)
비트캐스트 작업
통사론:
operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)
이 작업은 XLA 컴파일러에만 적용되므로 아직 사양이 없습니다.
비공식적으로, 이 작업은 요소의 물리적 배열이 변경되지 않는 방식으로 입력의 모양을 변경합니다.
이 작업에는 "요소의 물리적 배열"을 이해하기 위한 레이아웃 정보가 필요하며, MHLO의 레이아웃 지원은 현재 진행 중입니다.
예:
%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>
특성: AlwaysSpeculatableImplTrait
인터페이스: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
operand | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
mhlo.bitcast_convert
(mhlo::BitcastConvertOp)
BitcastConvert 작업
통사론:
operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)
operand
텐서에 비트캐스트 연산을 수행하고 result
텐서의 유형을 사용하여 전체 operand
텐서의 비트를 재해석한 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert
예:
%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>
특성: AlwaysSpeculatableImplTrait
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
operand | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
mhlo.broadcast
(mhlo::BroadcastOp)
방송 운영
이 작업은 StableHLO에서 진행 중이므로 사양에 포함되지 않습니다: https://github.com/openxla/stablehlo/issues/3
비공식적으로 이 작업은 XLA의 Broadcast와 동일한 작업을 수행합니다. https://www.tensorflow.org/xla/operation_semantics#broadcast
예:
%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>
특성: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsAndResultElementType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
broadcast_sizes | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
피연산자:
피연산자 | 설명 |
---|---|
operand | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
mhlo.broadcast_in_dim
(mhlo::BroadcastInDimOp)
BroadcastInDim 작업
operand
텐서의 데이터를 복제하여 입력 텐서의 차원 및/또는 순위를 확장하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim
예:
%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>
특성: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
인터페이스: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
피연산자:
피연산자 | 설명 |
---|---|
operand | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 복소수 유형의 정적 모양 또는 단일 경계 차원 텐서 |
mhlo.case
(mhlo::CaseOp)
케이스 작업
index
값에 따라 branches
에서 정확히 하나의 function
실행하여 출력을 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case
예:
%result0, %result1 = "mhlo.case"(%index) ({
mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)
특성: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
인터페이스: InferTypeOpInterface
피연산자:
피연산자 | 설명 |
---|---|
index | 32비트 부호 없는 정수 값의 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 값 또는 축당 정수 양자화 값의 순위가 매겨진 텐서 또는 토큰의 순위가 매겨진 텐서 |
mhlo.cbrt
(mhlo::CbrtOp)
Cbrt 작업
통사론:
operation ::= `mhlo.cbrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
텐서에 대해 요소별 세제곱근 연산을 수행하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt
예:
%result = mhlo.cbrt %operand : tensor<4xf32>
특성: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
result_accuracy | ::mlir::mhlo::결과정확도 속성 | 단항 연산에 대해 요청된 정확도입니다. |
피연산자:
피연산자 | 설명 |
---|---|
operand | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 복소수 유형의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
result | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 복소수 유형의 순위가 매겨진 텐서 |
mhlo.ceil
(mhlo::CeilOp)
천장 작업
통사론:
operation ::= `mhlo.ceil` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
텐서의 요소별 ceil을 수행하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceil
예:
%result = mhlo.ceil %operand : tensor<5xf32>
특성: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 텐서당 정수 양자화 값의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 또는 텐서당 정수 양자화 값의 순위가 매겨진 텐서 |
mhlo.cholesky
(mhlo::CholeskyOp)
콜레스키 작전
일련의 행렬에 대한 콜레스키 분해를 계산합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky
예:
%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>
특성: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsAndResultElementType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
lower | ::mlir::BoolAttr | bool 속성 |
피연산자:
피연산자 | 설명 |
---|---|
a | 32/64비트 부동 소수점 요소 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 복소수 유형의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 32/64비트 부동 소수점 요소 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 복소수 유형의 순위가 매겨진 텐서 |
mhlo.clamp
(mhlo::ClampOp)
클램프 작동
통사론:
operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
`:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))
operand
텐서의 모든 요소를 최소값과 최대값 사이에 고정하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp
예:
%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>
특성: AlwaysSpeculatableImplTrait
, HLO_BroadcastingElementwise
, InferTensorType
, SameOperandsAndResultElementType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
min | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
operand | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
max | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
result | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
mhlo.collective_broadcast
(mhlo::CollectiveBroadcastOp)
콜렉티브브로드캐스트 운영
프로세스 그리드의 각 프로세스 그룹 내에서 소스 프로세스의 operand
텐서 값을 대상 프로세스로 전송하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast
예:
%result = "mhlo.collective_broadcast"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>
특성: CompatibleOperandsAndResultType
인터페이스: InferShapedTypeOpInterface
, InferTypeOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
channel_handle | ::mlir::mhlo::채널 핸들 속성 | 두 개의 64비트 정수 'handle'과 'type' |
피연산자:
피연산자 | 설명 |
---|---|
operand | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
mhlo.collective_permute
(mhlo::CollectivePermuteOp)
CollectivePermute 운영
프로세스 그리드의 각 프로세스 그룹 내에서 소스 프로세스에서 대상 프로세스로 operand
텐서 값을 전송하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute
예:
%result = "mhlo.collective_permute"(%operand) {
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>
특성: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
source_target_pairs | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
channel_handle | ::mlir::mhlo::채널 핸들 속성 | 두 개의 64비트 정수 'handle'과 'type' |
피연산자:
피연산자 | 설명 |
---|---|
operand | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
mhlo.compare
(mhlo::CompareOp)
비교 작업
통사론:
operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
attr-dict `:` functional-type(operands, results)
comparison_direction
및 compare_type
에 따라 lhs
및 rhs
텐서의 요소별 비교를 수행하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compare
예:
%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>
특성: AlwaysSpeculatableImplTrait
, Elementwise
, InferTensorType
, SameOperandsAndResultShape
, SameOperandsElementType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
comparison_direction | ::mlir::mhlo::비교 방향 속성 | 어떤 비교 연산을 수행해야 합니까? |
compare_type | ::mlir::mhlo::비교유형속성 | 어떤 비교 유형을 사용해야 하나요? |
피연산자:
피연산자 | 설명 |
---|---|
lhs | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
rhs | 32/64비트 부동 소수점 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값을 갖는 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 복소수 유형의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | bool 값의 순위가 매겨진 텐서 |
mhlo.complex
(mhlo::ComplexOp)
복잡한 작업
통사론:
operation ::= `mhlo.complex` operands attr-dict
`:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))
실수와 허수 값 쌍인 lhs
와 rhs
에서 복소수 값으로 요소별 변환을 수행하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex
예:
%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>
특성: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
, SameOperandsElementType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
lhs | 32/64비트 부동 소수점 값의 순위가 매겨진 텐서 |
rhs | 32/64비트 부동 소수점 값의 순위가 매겨진 텐서 |
결과:
결과 | 설명 |
---|---|
result | 32/64비트 부동 소수점 요소 값을 갖는 복소수 유형의 순위가 매겨진 텐서 |
mhlo.composite
(mhlo::CompositeOp)
복합 연산
통사론:
operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)
다른 StableHLO 연산으로 구성된 연산을 캡슐화하여 inputs
과 composite_attributes
받아 results
생성합니다. 연산의 의미는 분해( decomposition
속성으로 구현됩니다. composite
연산은 프로그램 의미 체계를 변경하지 않고 분해(decomposition)로 대체될 수 있습니다. 분해를 인라인으로 구현해도 동일한 연산 의미 체계를 제공하지 않는 경우 custom_call
사용하는 것이 좋습니다.
version
필드(기본값은 0
)는 합성의 의미가 변경될 때를 나타내는 데 사용됩니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composite
예:
%results = mhlo.composite "my.op" %arg0, %arg1 {
decomposition = @my_op,
composite_attributes = { my_attribute = "my_value" },
version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>
인터페이스: SymbolUserOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
name | ::mlir::문자열 속성 | 문자열 속성 |
composite_attributes | ::mlir::사전 속성 | 명명된 속성 값의 사전 |
decomposition | ::mlir::플랫심볼참조 속성 | 플랫 심볼 참조 속성 |
version | ::mlir::정수 속성 | 32비트 부호 없는 정수 속성 |
피연산자:
피연산자 | 설명 |
---|---|
inputs | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소가 있는 복합 유형 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값 또는 토큰 또는 4/6/8/16/32/64비트 부동 소수점 또는 32/64비트 부동 소수점의 순위 텐서 조합이 포함된 중첩 튜플의 순위 텐서의 가변 bool 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서별 정수 양자화 값이 있는 복합 유형 또는 4/6/8/16/32/64비트 부동 또는 bool의 memref 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서별 정수 양자화 값 또는 순위가 있는 복합 유형 텐서 축별 정수 양자화 값 또는 토큰 값 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소가 있는 복합 유형 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값 또는 토큰 또는 4/6/8/16/32/64비트 부동 소수점 또는 32/64비트 부동 소수점의 순위 텐서 조합이 포함된 중첩 튜플의 순위 텐서의 가변 bool 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서별 정수 양자화 값이 있는 복합 유형 또는 4/6/8/16/32/64비트 부동 또는 bool의 memref 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서별 정수 양자화 값 또는 순위가 있는 복합 유형 텐서 축별 정수 양자화 값 또는 토큰 값 |
mhlo.concatenate
(mhlo::ConcatenateOp)
연결 작업
주어진 인수와 동일한 순서로 dimension
차원을 따라 inputs
의 가변 개수의 텐서를 연결하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatenate
예:
%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>
특성: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
dimension | ::mlir::정수 속성 | 값이 음수가 아닌 64비트 부호 없는 정수 속성 |
피연산자:
피연산자 | 설명 |
---|---|
val | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서의 가변값 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.constant
(mhlo::ConstantOp)
지속적인 작동
상수 value
에서 output
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant
예:
%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>
특성: AlwaysSpeculatableImplTrait
, ConstantLike
인터페이스: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
value | ::mlir::요소속성 | 상수 벡터/텐서 속성 |
결과:
결과 | 설명 |
---|---|
output | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 정적인 형태의 텐서 |
mhlo.convert
(mhlo::ConvertOp)
변환 작업
통사론:
operation ::= `mhlo.convert` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
텐서에서 한 요소 유형에서 다른 요소 유형으로 요소별 변환을 수행하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert
예:
%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>
특성: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.convolution
(mhlo::ConvolutionOp)
컨볼루션 연산
통사론:
operation ::= `mhlo.convolution` `(`operands`)`
`dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
`window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
$lhs_dilation, $rhs_dilation,
$window_reversal) `}`
attr-dict `:` functional-type(operands, results)
lhs
의 윈도우와 rhs
의 슬라이스 사이의 내적을 계산하고 result
생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
예:
%result = "mhlo.convolution"(%lhs, %rhs) {
window_strides = dense<4> : tensor<2xi64>,
padding = dense<0> : tensor<2x2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>
특성: AlwaysSpeculatableImplTrait
인터페이스: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
padding | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
window_reversal | ::mlir::DenseElementsAttr | 상수 부울 벡터/텐서 속성 |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | 전환 작업에 대한 차원 정보의 구조 |
feature_group_count | ::mlir::정수 속성 | 값이 양수인 64비트 부호 없는 정수 속성 |
batch_group_count | ::mlir::정수 속성 | 값이 양수인 64비트 부호 없는 정수 속성 |
precision_config | ::mlir::배열 속성 | 정밀 구성 속성 |
피연산자:
피연산자 | 설명 |
---|---|
lhs | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
rhs | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.copy
(mhlo::CopyOp)
복사 작업
통사론:
operation ::= `mhlo.copy` operands attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
이 작업은 XLA 컴파일러 전용이므로 아직 사양이 없습니다.
비공식적으로 이 작업은 operand
의 복사본입니다. 작업에 첨부된 메타데이터에 따라 작업이 없는 작업과 상당히 다르게 동작할 수 있습니다.
예:
%0 = mhlo.copy %arg0 : tensor<f32>
특성: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
cross_program_prefetch_index | ::mlir::정수 속성 | 32비트 부호 없는 정수 속성 |
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값 또는 토큰 또는 4/6/8/16/32/64비트 부동 또는 부울의 순위 텐서 조합이 있는 중첩 튜플 또는 2/4/8/16/32/64비트 정수의 순위 텐서 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 값이 있는 복합 유형 또는 4/6/8/16/32/64비트 부동 또는 부울의 memref 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 값 또는 순위 텐서가 있는 복합 유형 축당 정수 양자화된 값 또는 토큰 값 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값 또는 토큰 또는 4/6/8/16/32/64비트 부동 또는 부울의 순위 텐서 조합이 있는 중첩 튜플 또는 2/4/8/16/32/64비트 정수의 순위 텐서 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 값이 있는 복합 유형 또는 4/6/8/16/32/64비트 부동 또는 부울의 memref 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 값 또는 순위 텐서가 있는 복합 유형 축당 정수 양자화된 값 또는 토큰 값 |
mhlo.cosh
(mhlo::CoshOp)
코시 운영
통사론:
operation ::= `mhlo.cosh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
텐서에 대해 요소별 cosh 연산을 수행하고 result
텐서를 생성합니다.
예:
%result = mhlo.cosh %operand : tensor<2x2xf32>
특성: CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: InferShapedTypeOpInterface
, InferTypeOpInterface
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 32/64비트 부동 소수점 요소 값을 갖는 복합 유형의 텐서 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 또는 32/64비트 부동 소수점 요소 값을 갖는 복합 유형의 텐서 |
mhlo.cosine
(mhlo::CosineOp)
코사인 연산
통사론:
operation ::= `mhlo.cosine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
텐서에 대해 요소별 코사인 연산을 수행하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine
예:
%result = mhlo.cosine %operand : tensor<2xf32>
특성: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | 단항 연산에 대해 요청된 정확도입니다. |
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화된 값이 있는 복합 유형의 순위 텐서 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화된 값이 있는 복합 유형의 순위 텐서 |
mhlo.count_leading_zeros
(mhlo::ClzOp)
Clz 작업
통사론:
operation ::= `mhlo.count_leading_zeros` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
텐서에서 선행 0 비트 수의 요소별 계산을 수행하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros
예:
%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>
특성: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
operand | 2/4/8/16/32/64비트 정수 값의 순위 텐서 |
결과:
결과 | 설명 |
---|---|
result | 2/4/8/16/32/64비트 정수 값의 순위 텐서 |
mhlo.create_token
(mhlo::CreateTokenOp)
CreateToken 작업
통사론:
operation ::= `mhlo.create_token` attr-dict `:` type(results)
이 작업은 StableHLO에서 벗어나는 중이므로 사양에 포함되지 않습니다: https://github.com/openxla/stablehlo/issues/3
비공식적으로 이 작업은 입력이 0인 AfterAllOp와 동일한 작업을 수행합니다. https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
예:
%output = mhlo.create_token : !mhlo.token
특성: AlwaysSpeculatableImplTrait
인터페이스: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
결과:
결과 | 설명 |
---|---|
output | 토큰 |
mhlo.cross-replica-sum
(mhlo::CrossReplicaSumOp)
CrossReplicaSum 작업
이 작업은 StableHLO에서 벗어나는 중이므로 사양에 포함되지 않습니다: https://github.com/openxla/stablehlo/issues/3
비공식적으로 이 작업은 channel_id = 0
, use_global_device_ids = false
및 computation
구현 추가를 사용하여 AllReduceOp와 동일한 작업을 수행합니다. https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
예:
%result = "mhlo.cross-replica-sum"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>
특성: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.custom_call
(mhlo::CustomCallOp)
CustomCall 작업
통사론:
operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
attr-dict `:` functional-type(operands, results)
inputs
및 called_computations
가져와 results
생성하는 구현 정의 작업 call_target_name
캡슐화합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call
예:
%results = "mhlo.custom_call"(%input0) {
call_target_name = "foo",
has_side_effect = false,
backend_config = "bar",
api_version = 1 : i32,
called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>
A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.
If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.
Depending on the API version there are two ways to pass extra bits of static
information to the external function:
1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
dictionary attribute, that will be encoded according to the custom call
calling convention and passed to the external function as the attributes
argument. External code is expected to use declarative bindings (see
`xla/runtime/custom_call.h`) to decode them at run time. These custom
calls are only supported if XLA uses XLA runtime.
2. For previous API versions it is the user responsibility to encode extra
bits of static information as a string `backend_config` attribute, and
decode it at run time.
인터페이스: MemoryEffectOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
call_target_name | ::mlir::문자열 속성 | 문자열 속성 |
has_side_effect | ::mlir::BoolAttr | 부울 속성 |
backend_config | ::mlir::속성 | 문자열 속성 또는 명명된 속성 값의 사전 |
api_version | ::mlir::mhlo::CustomCallApiVersionAttr | 맞춤 통화 API 버전 |
called_computations | ::mlir::배열 속성 | 평면 기호 참조 배열 속성 |
custom_call_schedule | ::mlir::mhlo::CustomCallScheduleAttr | 맞춤형 호출에 대해 원하는 일정을 지정합니다. |
operand_layouts | ::mlir::배열 속성 | 레이아웃 배열(인덱스 유형의 1D 텐서) 속성 |
result_layouts | ::mlir::배열 속성 | 레이아웃 배열(인덱스 유형의 1D 텐서) 속성 |
output_operand_aliases | ::mlir::배열 속성 | CustomCall의 출력 및 피연산자에 대한 앨리어싱 속성 |
피연산자:
피연산자 | 설명 |
---|---|
inputs | 4/6/8/16/32/64비트 float 또는 bool 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 float 요소가 있는 복합 유형의 텐서 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값 또는 4/6/8/16/32/64비트 float 또는 bool의 memref 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소가 있는 복합 유형 또는 텐서당 정수 양자화된 값 또는 토큰 또는 4/6/8/16/32/64비트 부동 또는 부울의 텐서 조합이 있는 중첩 튜플 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수가 있는 복합 유형 양자화 또는 축별 정수 양자화 값 또는 4/6/8/16/32/64비트 float 또는 bool 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 float 요소 또는 텐서별 정수 양자화 값 또는 토큰 값을 포함하는 복합 유형의 memref |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 float 또는 bool 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 float 요소가 있는 복합 유형의 텐서 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값 또는 4/6/8/16/32/64비트 float 또는 bool의 memref 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소가 있는 복합 유형 또는 텐서당 정수 양자화된 값 또는 토큰 또는 4/6/8/16/32/64비트 부동 또는 부울의 텐서 조합이 있는 중첩 튜플 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수가 있는 복합 유형 양자화 또는 축별 정수 양자화 값 또는 4/6/8/16/32/64비트 float 또는 bool 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 float 요소 또는 텐서별 정수 양자화 값 또는 토큰 값을 포함하는 복합 유형의 memref |
mhlo.divide
(mhlo::DivOp)
Div 작업
통사론:
operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
피제수 lhs
및 제수 rhs
텐서를 요소별 나눗셈을 수행하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide
예:
%result = mhlo.divide %lhs, %rhs : tensor<4xf32>
특성: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
lhs | 2/4/8/16/32/64비트 정수 또는 4/6/8/16/32/64비트 부동 소수점 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
rhs | 2/4/8/16/32/64비트 정수 또는 4/6/8/16/32/64비트 부동 소수점 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
결과:
결과 | 설명 |
---|---|
result | 2/4/8/16/32/64비트 정수 또는 4/6/8/16/32/64비트 부동 소수점 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.domain
(mhlo::DomainOp)
도메인 운영
이 작업은 XLA 컴파일러 전용이므로 아직 사양이 없습니다.
비공식적으로 이러한 작업은 동일한 DomainMetadata 속성을 가진 명령을 그룹화하는 데 사용됩니다. ShardingMetadata는 오늘날 동일한 장치에 대한 명령을 그룹화하는 주요 사용 사례입니다. 도메인 지침은 두 가지 주요 이점을 제공합니다.
- 도메인 전체에 걸쳐 의도치 않게 지침을 최적화하는 것을 방지합니다.
- 도메인에서 생성된 지침의 메타데이터를 자동으로 할당합니다. 도메인 지침이 없으면 각 HLO 최적화 패스는 메타데이터를 확인하고 전파해야 하며 이는 놓치기 쉽고 컴파일러에 복잡성을 추가합니다. 도메인 명령어는 두 개의 서로 다른 도메인을 연결하므로 각 도메인 명령어는 두 개의 DomainMetadata(도메인의 피연산자 측에 하나, 사용자 측에 하나)와 연결됩니다.
특성: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
kind | ::mlir::mhlo::도메인 종류 속성 | HLO 도메인에 연결된 도메인 메타데이터의 종류입니다. |
entry_metadata | ::mlir::문자열 속성 | 문자열 속성 |
exit_metadata | ::mlir::문자열 속성 | 문자열 속성 |
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화된 값 또는 축당 정수 양자화 값 또는 토큰의 순위 텐서가 있는 복합 유형의 순위 텐서 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화된 값 또는 축당 정수 양자화 값 또는 토큰의 순위 텐서가 있는 복합 유형의 순위 텐서 |
mhlo.dot
(mhlo::DotOp)
도트 연산
이 작업은 StableHLO에서 벗어나는 중이므로 사양에 포함되지 않습니다: https://github.com/openxla/stablehlo/issues/3
비공식적으로 이 작업은 XLA의 Dot과 동일한 작업을 수행합니다: https://www.tensorflow.org/xla/Operation_semantics#dot
예:
%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>
특성: AlwaysSpeculatableImplTrait
인터페이스: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
precision_config | ::mlir::배열 속성 | 정밀 구성 속성 |
피연산자:
피연산자 | 설명 |
---|---|
lhs | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
rhs | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.dot_general
(mhlo::DotGeneralOp)
도트일반작업
lhs
조각과 rhs
조각 사이의 내적을 계산하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general
예:
%result = "mhlo.dot_general"(%lhs, %rhs) {
dot_dimension_numbers = #mhlo.dot<
lhs_batching_dimensions = [0],
rhs_batching_dimensions = [0],
lhs_contracting_dimensions = [2],
rhs_contracting_dimensions = [1]
>,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>
특성: AlwaysSpeculatableImplTrait
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | 도트의 치수 정보를 모델링하는 속성입니다. |
precision_config | ::mlir::배열 속성 | 정밀 구성 속성 |
algorithm | ::mlir::mhlo::DotAlgorithmAttr | 점 계산에 사용할 알고리즘 제약 조건을 모델링하는 속성입니다. |
피연산자:
피연산자 | 설명 |
---|---|
lhs | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
rhs | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.dynamic_broadcast_in_dim
(mhlo::DynamicBroadcastInDimOp)
DynamicBroadcastInDim 작업
이 작업은 기능적으로 Broadcast_in_dim op와 동일하지만 결과 모양은 output_dimensions
통해 동적으로 지정됩니다.
또한 차원의 확장 동작에 대한 정적 지식을 표현하기 위해 선택적 속성을 허용합니다. 지정하지 않으면 모든 차원이 확장될 수 있는 것으로 가정됩니다. 확장되는 것으로 알려진 차원 집합과 확장되지 않는 것으로 알려진 차원 집합은 연결되지 않아야 하며 피연산자 차원의 하위 집합이어야 합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim
예:
%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
broadcast_dimensions = array<i64: 2, 1>,
known_expanding_dimensions = array<i64: 0>,
known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>
특성: AlwaysSpeculatableImplTrait
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
known_expanding_dimensions | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
known_nonexpanding_dimensions | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
output_dimensions | 인덱스 또는 2/4/8/16/32/64비트 정수 값의 1D 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.dynamic_conv
(mhlo::DynamicConvOp)
DynamicConv 작업
이 작업은 진행 중인 작업이므로 아직 사양에 포함되지 않았습니다: https://github.com/openxla/stablehlo/issues/8
비공식적으로 이 작업은 padding
d_padding
통해 동적으로 지정된다는 점을 제외하면 ConvolutionOp와 동일한 작업을 수행합니다. https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
예:
%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
window_strides = dense<4> : tensor<2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>
특성: AlwaysSpeculatableImplTrait
인터페이스: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
padding | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
window_reversal | ::mlir::DenseElementsAttr | 상수 부울 벡터/텐서 속성 |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | 전환 작업에 대한 차원 정보의 구조 |
feature_group_count | ::mlir::정수 속성 | 값이 양수인 64비트 부호 없는 정수 속성 |
batch_group_count | ::mlir::정수 속성 | 값이 양수인 64비트 부호 없는 정수 속성 |
precision_config | ::mlir::배열 속성 | 정밀 구성 속성 |
피연산자:
피연산자 | 설명 |
---|---|
lhs | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
rhs | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
d_padding | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.dynamic_gather
(mhlo::DynamicGatherOp)
DynamicGather 작업
이 작업은 진행 중인 작업이므로 아직 사양에 포함되지 않았습니다: https://github.com/openxla/stablehlo/issues/8
비공식적으로 이 작업은 slice_sizes
동적으로 지정된다는 점을 제외하면 GatherOp와 동일한 작업을 수행합니다. https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
예:
%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
dimension_numbers = #mhlo.gather<
offset_dims = [2, 3],
collapsed_slice_dims = [0],
start_index_map = [0, 2],
index_vector_dim = 2>,
indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>
특성: AlwaysSpeculatableImplTrait
, InferTensorType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | 수집을 위한 차원 정보를 모델링하는 속성 |
indices_are_sorted | ::mlir::BoolAttr | 부울 속성 |
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
start_indices | 2/4/8/16/32/64비트 정수 값의 순위 텐서 |
slice_sizes | 2/4/8/16/32/64비트 정수 값의 정적인 형태의 1차원 정수 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.dynamic_iota
(mhlo::DynamicIotaOp)
DynamicIota 작업
이 작업은 기능적으로 iota op와 동일하지만 결과 모양은 output_shape
통해 동적으로 지정됩니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota
예:
%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>
특성: AlwaysSpeculatableImplTrait
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
iota_dimension | ::mlir::정수 속성 | 값이 음수가 아닌 64비트 부호 없는 정수 속성 |
피연산자:
피연산자 | 설명 |
---|---|
output_shape | 인덱스 또는 2/4/8/16/32/64비트 정수 값의 1D 텐서 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.dynamic_pad
(mhlo::DynamicPadOp)
다이나믹패드 작동
통사론:
operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)
operand
동적으로 패딩합니다. 저급/고급/내부에 추가된 패딩 양은 입력 텐서를 통해 전달됩니다.
특성: AlwaysSpeculatableImplTrait
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
padding_value | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
edge_padding_low | 인덱스 또는 2/4/8/16/32/64비트 정수 값의 1D 텐서 |
edge_padding_high | 인덱스 또는 2/4/8/16/32/64비트 정수 값의 1D 텐서 |
interior_padding | 인덱스 또는 2/4/8/16/32/64비트 정수 값의 1D 텐서 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.dynamic_reshape
(mhlo::DynamicReshapeOp)
DynamicReshape 작업
통사론:
operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)
이 작업은 기능적으로 reshape op와 동일하지만 결과 모양은 output_shape
통해 동적으로 지정됩니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape
예:
%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>
특성: AlwaysSpeculatableImplTrait
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 텐서 |
output_shape | 인덱스 또는 2/4/8/16/32/64비트 정수 값의 1D 텐서 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 텐서 |
mhlo.dynamic_slice
(mhlo::DynamicSliceOp)
DynamicSlice 작업
동적으로 계산된 시작 인덱스를 사용하여 operand
에서 슬라이스를 추출하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice
예:
%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
: (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>
특성: AlwaysSpeculatableImplTrait
, InferTensorType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
slice_sizes | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
start_indices | 2/4/8/16/32/64비트 정수 값의 0D 텐서의 가변값 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.dynamic_update_slice
(mhlo::DynamicUpdateSliceOp)
DynamicUpdateSlice 작업
통사론:
operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)
start_indices
에서 시작하는 슬라이스가 update
의 값으로 업데이트된다는 점을 제외하면 operand
텐서와 동일한 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice
예:
%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
: (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>
특성: AlwaysSpeculatableImplTrait
, InferTensorType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
update | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
start_indices | 2/4/8/16/32/64비트 정수 값의 0D 텐서의 가변값 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.einsum
(mhlo::EinsumOp)
Einsum 작업
이 작업은 StableHLO에서 벗어나는 중이므로 사양에 포함되지 않습니다: https://github.com/openxla/stablehlo/issues/3
비공식적으로 이 작업은 TF의 einsum과 동일한 작업을 수행합니다: https://www.tensorflow.org/api_docs/python/tf/einsum
예:
%result = "mhlo.einsum"(%lhs, %rhs) {
einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>
특성: AlwaysSpeculatableImplTrait
인터페이스: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
einsum_config | ::mlir::문자열 속성 | 문자열 속성 |
피연산자:
피연산자 | 설명 |
---|---|
lhs | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
rhs | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
결과:
결과 | 설명 |
---|---|
«이름 없음» | 4/6/8/16/32/64비트 부동 소수점 또는 부울 또는 2/4/8/16/32/64비트 정수 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화 또는 축당 정수 양자화 값이 있는 복합 유형의 순위 텐서 |
mhlo.erf
(mhlo::ErfOp)
Erf 작동
통사론:
operation ::= `mhlo.erf` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
텐서에 대해 요소별 erf 연산을 수행하고 result
텐서를 생성합니다.
예:
%result = mhlo.erf %operand : tensor<2x2xf32>
특성: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 값의 순위 텐서 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 값의 순위 텐서 |
mhlo.exponential
(mhlo::ExpOp)
특급작전
통사론:
operation ::= `mhlo.exponential` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
텐서에 대해 요소별 지수 연산을 수행하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential
예:
%result = mhlo.exponential %operand : tensor<2x2xf64>
특성: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | 단항 연산에 대해 요청된 정확도입니다. |
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화된 값이 있는 복합 유형의 순위 텐서 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화된 값이 있는 복합 유형의 순위 텐서 |
mhlo.exponential_minus_one
(mhlo::Expm1Op)
Expm1 작업
통사론:
operation ::= `mhlo.exponential_minus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
텐서에 대해 요소별 지수 마이너스 1 연산을 수행하고 result
텐서를 생성합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one
예:
%result = mhlo.exponential_minus_one %operand : tensor<2xf32>
특성: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | 단항 연산에 대해 요청된 정확도입니다. |
피연산자:
피연산자 | 설명 |
---|---|
operand | 4/6/8/16/32/64비트 부동 소수점 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화된 값이 있는 복합 유형의 순위 텐서 |
결과:
결과 | 설명 |
---|---|
result | 4/6/8/16/32/64비트 부동 소수점 또는 32/64비트 부동 요소 또는 텐서당 정수 양자화된 값이 있는 복합 유형의 순위 텐서 |
mhlo.fft
(mhlo::FftOp)
FFT 연산
실수 및 복소수 입력/출력에 대해 정방향 및 역 푸리에 변환을 수행합니다.
참조: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft
예:
%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>
특성: AlwaysSpeculatableImplTrait
, InferTensorType
인터페이스: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
fft_type | ::mlir::mhlo::FftTypeAttr | XLA 고속 푸리에 변환 유형입니다. |
fft_length | ::mlir::DenseIntElementsAttr | 64비트 부호 없는 정수 요소 속성 |
피연산자:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.floor
(mhlo::FloorOp)
Floor operation
통사론:
operation ::= `mhlo.floor` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise floor of operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor
예:
%result = mhlo.floor %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values |
mhlo.fusion
(mhlo::FusionOp)
Fusion operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
fusion_kind | ::mlir::mhlo::FusionKindAttr | fusion kind |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of Fusion |
Operands:
피연산자 | 설명 |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
결과:
결과 | 설명 |
---|---|
results | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.gather
(mhlo::GatherOp)
Gather operation
Gathers slices from operand
tensor from offsets specified in start_indices
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
예:
%result = "mhlo.gather"(%operand, %start_indices) {
dimension_numbers = #stablehlo.gather<
offset_dims = [3, 4],
collapsed_slice_dims = [1],
operand_batching_dims = [0],
start_indices_batching_dims = [1],
start_index_map = [2, 1],
index_vector_dim = 3>,
slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit integer values |
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.get_dimension_size
(mhlo::GetDimensionSizeOp)
GetDimensionSize operation
Produces the size of the given dimension
of the operand
.
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size
예:
%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | tensor of 32-bit signless integer values |
mhlo.get_tuple_element
(mhlo::GetTupleElementOp)
GetTupleElement operation
통사론:
operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)
Extracts element at index
position of the operand
tuple and produces a result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element
예:
%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
index | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
피연산자 | 설명 |
---|---|
operand | nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.if
(mhlo::IfOp)
If operation
Produces the output from executing exactly one branch from true_branch
or false_branch
depending on the value of pred
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if
Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor
Traits: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
인터페이스: InferTypeOpInterface
Operands:
피연산자 | 설명 |
---|---|
pred | ranked tensor of bool values |
결과:
결과 | 설명 |
---|---|
«unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.imag
(mhlo::ImagOp)
Imag operation
통사론:
operation ::= `mhlo.imag` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the imaginary part, element-wise, from the operand
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag
예:
%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.infeed
(mhlo::InfeedOp)
Infeed operation
Reads data from the infeed and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed
예:
%results:2 = "mhlo.infeed"(%token) {
infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
infeed_config | ::mlir::StringAttr | string attribute |
layout | ::mlir::ArrayAttr | array attribute |
Operands:
피연산자 | 설명 |
---|---|
token | 토큰 |
결과:
결과 | 설명 |
---|---|
«unnamed» | variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token |
mhlo.iota
(mhlo::IotaOp)
Iota operation
Fills an output
tensor with values in increasing order starting from zero along the iota_dimension
dimension.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota
예:
%output = mhlo.iota dim = 0 : tensor<4x5xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
결과:
결과 | 설명 |
---|---|
output | statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.is_finite
(mhlo::IsFiniteOp)
IsFinite operation
통사론:
operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)
Performs element-wise check whether the value in x
is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite
예:
%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
x | ranked tensor of 4/6/8/16/32/64-bit float values |
결과:
결과 | 설명 |
---|---|
y | ranked tensor of bool values |
mhlo.log
(mhlo::LogOp)
Log operation
통사론:
operation ::= `mhlo.log` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log
예:
%result = mhlo.log %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.log_plus_one
(mhlo::Log1pOp)
Log1p operation
통사론:
operation ::= `mhlo.log_plus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm plus one operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one
예:
%result = mhlo.log_plus_one %operand : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.logistic
(mhlo::LogisticOp)
Logistic operation
통사론:
operation ::= `mhlo.logistic` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logistic operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic
예:
%result = mhlo.logistic %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.map
(mhlo::MapOp)
Map operation
Applies a map function computation
to inputs
along the dimensions
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map
예:
%result = "mhlo.map"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameOperandsAndResultShape
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
피연산자 | 설명 |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.maximum
(mhlo::MaxOp)
Max operation
통사론:
operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise max operation on tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum
예:
%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.minimum
(mhlo::MinOp)
Min operation
통사론:
operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise min operation on tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum
예:
%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.minimum_broadcast_shapes
(mhlo::MinimumBroadcastShapesOp)
Minimizes the rank of two or more shapes to be broadcasted
통사론:
operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)
Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i
corresponds to output i
.
The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.
The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.
Here is an example with two input shapes:
mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
[1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]
The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
shapes | variadic of 1D tensor of index values |
결과:
결과 | 설명 |
---|---|
results | variadic of 1D tensor of index values |
mhlo.multiply
(mhlo::MulOp)
Mul operation
통사론:
operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise product of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply
예:
%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.negate
(mhlo::NegOp)
Neg operation
통사론:
operation ::= `mhlo.negate` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise negation of operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate
예:
%result = mhlo.negate %operand : tensor<2x3xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.not
(mhlo::NotOp)
Not operation
통사론:
operation ::= `mhlo.not` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise NOT of tensor operand
of type integer and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not
예:
%result = mhlo.not %operand : tensor<5x3x1xi1>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
mhlo.optimization_barrier
(mhlo::OptimizationBarrierOp)
OptimizationBarrier operation
통사론:
operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?
Ensures that the operations that produce the operand
are executed before any operations that depend on the result
and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result
= operand
.
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier
예:
%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>
Traits: AlwaysSpeculatableImplTrait
, HLO_PairwiseSameOperandAndResultType
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
결과:
결과 | 설명 |
---|---|
result | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.or
(mhlo::OrOp)
Or operation
통사론:
operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise OR of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or
예:
%result = mhlo.or %lhs, %rhs : tensor<2xi1>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
lhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.outfeed
(mhlo::OutfeedOp)
Outfeed operation
Writes inputs
to the outfeed and produces a result
token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed
예:
%result = "mhlo.outfeed"(%input0, %token) {
outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token
인터페이스: InferTypeOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
outfeed_config | ::mlir::StringAttr | string attribute |
Operands:
피연산자 | 설명 |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
token | 토큰 |
결과:
결과 | 설명 |
---|---|
«unnamed» | 토큰 |
mhlo.pad
(mhlo::PadOp)
Pad operation
Expands operand
by padding around the tensor as well as between the elements of the tensor with the given padding_value
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad
예:
%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
: (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
edge_padding_low | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
edge_padding_high | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
interior_padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
padding_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.partition_id
(mhlo::PartitionIdOp)
PartitionId operation
통사론:
operation ::= `mhlo.partition_id` attr-dict `:` type(results)
Produces partition_id
of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id
예:
%result = mhlo.partition_id : tensor<ui32>
인터페이스: InferTypeOpInterface
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 32-bit unsigned integer values |
mhlo.popcnt
(mhlo::PopulationCountOp)
PopulationCount operation
통사론:
operation ::= `mhlo.popcnt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of bits set in the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt
예:
%result = mhlo.popcnt %operand : tensor<4xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.power
(mhlo::PowOp)
Pow operation
통사론:
operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise exponentiation of lhs
tensor by rhs
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power
예:
%result = mhlo.power %lhs, %rhs : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.ragged_dot
(mhlo::RaggedDotOp)
Ragged matrix multiplication over a single ragged dimension
This operation takes three tensor args---lhs, rhs, and group_sizes---and a "ragged_dot_dimension_numbers" attribute. Like dot_general, the lhs and rhs are allowed arbitrary batch and contracting dimensions. Additionally, the lhs is required to have one ragged dimension, and the rhs may have at most one group dimension. The op has three modes, depending on the kind of the lhs ragged dimension.
In mode 1, the shape-signature is [b,m,k], [g,b,k,n], [b,g] -> [b,m,n]
. Here the ragged dimension is an lhs non-contracting dimension ( m
). The dimensions b
and k
represent batch and contracting dimensions respectively. The rhs is required to have a group dimension ( g
).
In mode 2, the shape-signature is [b,m,k], [b,k,n], [b,g] -> [g,b,m,n]
. Here the ragged dimension is an lhs/rhs contracting dimension ( k
).
In mode 3, the shape-signature is [b,m,k], [b,k,n], [g] -> [b,m,n]
. Here the ragged dimension is an lhs/rhs batch dimension ( b
).
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
ragged_dot_dimension_numbers | ::mlir::mhlo::RaggedDotDimensionNumbersAttr | Attribute that models the dimension information for ragged dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
피연산자 | 설명 |
---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
group_sizes | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.real
(mhlo::RealOp)
Real operation
통사론:
operation ::= `mhlo.real` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the real part, element-wise, from the operand
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real
예:
%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.real_dynamic_slice
(mhlo::RealDynamicSliceOp)
RealDynamicSlice operation
통사론:
operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as SliceOp except that start_indices
, limit_indices
and strides
are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
예:
%result = mhlo.real_dynamic_slice %operand,
%start_indices, %limit_indices, %strides
: (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
limit_indices | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
strides | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.recv
(mhlo::RecvOp)
Recv operation
Receives data from a channel with channel_id
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv
예:
%results:2 = "mhlo.recv"(%token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
is_host_transfer = false,
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
source_target_pairs | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
피연산자 | 설명 |
---|---|
token | 토큰 |
결과:
결과 | 설명 |
---|---|
«unnamed» | variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token |
mhlo.reduce
(mhlo::ReduceOp)
Reduce operation
Applies a reduction function body
to inputs
and init_values
along the dimensions
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce
예:
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameVariadicOperandSize
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
피연산자 | 설명 |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_values | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.reduce_precision
(mhlo::ReducePrecisionOp)
ReducePrecision operation
통사론:
operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))
Performs element-wise conversion of operand
to another floating-point type that uses exponent_bits
and mantissa_bits
and back to the original floating-point type and produces an output
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision
예:
%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
exponent_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
mantissa_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
결과:
결과 | 설명 |
---|---|
output | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.reduce_scatter
(mhlo::ReduceScatterOp)
ReduceScatter operation
Within each process group in the process grid, performs reduction, using computations
, over the values of the operand
tensor from each process, splits the reduction result along scatter_dimension
into parts, and scatters the split parts between the processes to produce the result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter
예:
%result = "mhlo.reduce_scatter"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg0, %arg1 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
scatter_dimension = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
scatter_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
use_global_device_ids | ::mlir::유닛 속성 | 단위 속성 |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.reduce_window
(mhlo::ReduceWindowOp)
ReduceWindow operation
Applies a reduction function body
to windows of inputs
and init_values
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window
예:
%result = "mhlo.reduce_window"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
window_dimensions = dense<[2, 1]> : tensor<2xi64>,
window_strides = dense<[4, 1]> : tensor<2xi64>,
base_dilations = dense<[2, 1]> : tensor<2xi64>,
window_dilations = dense<[3, 1]> : tensor<2xi64>,
padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameVariadicOperandSize
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
base_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
피연산자 | 설명 |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_values | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.remainder
(mhlo::RemOp)
Rem operation
통사론:
operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise remainder of dividend lhs
and divisor rhs
tensors and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder
예:
%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.replica_id
(mhlo::ReplicaIdOp)
ReplicaId operation
통사론:
operation ::= `mhlo.replica_id` attr-dict `:` type(results)
Produces replica_id
of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id
예:
%result = mhlo.replica_id : tensor<ui32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 32-bit unsigned integer values |
mhlo.reshape
(mhlo::ReshapeOp)
Reshape operation
통사론:
operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)
Performs reshape of operand
tensor to a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape
예:
%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>
Traits: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | statically shaped or single bounded dimension tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.return
(mhlo::ReturnOp)
_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425
Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.
Example:
```mlir
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
```_
Syntax:
```
operation ::= mhlo.return
$results attr-dict ( :
type($results)^)?
Traits: `AlwaysSpeculatableImplTrait`, `Terminator`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
### `mhlo.reverse` (mhlo::ReverseOp)
_Reverse operation_
Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.
See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>
Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.rng
(mhlo::RngOp)
Rng operation
Generates random numbers using the rng_distribution
algorithm and produces a result
tensor of a given shape shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng
예:
%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>
Traits: InferTensorType
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
rng_distribution | ::mlir::mhlo::RngDistributionAttr | XLA PRNG distribution to be used. |
Operands:
피연산자 | 설명 |
---|---|
a | 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
b | 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
mhlo.rng_bit_generator
(mhlo::RngBitGeneratorOp)
RngBitGenerator operation
Returns an output
filled with uniform random data and an updated output state output_state
given an initial state initial_state
using the pseudorandom number generator algorithm rng_algorithm
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator
예:
%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
rng_algorithm | ::mlir::mhlo::RngAlgorithmAttr | XLA PRNG algorithm to be used. |
Operands:
피연산자 | 설명 |
---|---|
initial_state | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
결과:
결과 | 설명 |
---|---|
output_state | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
output | statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
mhlo.round_nearest_afz
(mhlo::RoundOp)
Round operation
통사론:
operation ::= `mhlo.round_nearest_afz` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz
예:
%result = mhlo.round_nearest_afz %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.round_nearest_even
(mhlo::RoundNearestEvenOp)
RoundNearestEven operation
통사론:
operation ::= `mhlo.round_nearest_even` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even
예:
%result = mhlo.round_nearest_even %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.rsqrt
(mhlo::RsqrtOp)
Rsqrt operation
통사론:
operation ::= `mhlo.rsqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise reciprocal square root operation on operand
tensor and produces a result
tensor, implementing the rSqrt
operation from the IEEE-754 specification.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt
예:
%result = mhlo.rsqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.scatter
(mhlo::ScatterOp)
Scatter operation
Produces results
tensors which are equal to inputs
tensors except that several slices specified by scatter_indices
are updated with the values updates
using update_computation
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter
예:
%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
scatter_dimension_numbers = #mhlo.scatter<
update_window_dims = [3, 4],
inserted_window_dims = [1],
input_batching_dims = [0],
scatter_indices_batching_dims = [1],
scatter_dims_to_operand_dims = [2, 1],
index_vector_dim = 3>,
indices_are_sorted = false,
unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>
Traits: RecursiveMemoryEffects
, SameVariadicOperandSize
인터페이스: InferTypeOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
scatter_dimension_numbers | ::mlir::mhlo::ScatterDimensionNumbersAttr | Attribute that models the dimension information for scatter |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
unique_indices | ::mlir::BoolAttr | bool attribute |
Operands:
피연산자 | 설명 |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
scatter_indices | ranked tensor of integer or index values |
updates | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.select
(mhlo::SelectOp)
Select operation
통사론:
operation ::= `mhlo.select` operands attr-dict `:`
custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))
Produces a result
tensor where each element is selected from on_true
or on_false
tensor based on the value of the corresponding element of pred
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select
예:
%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait
, HLO_BroadcastingElementwise
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
pred | ranked tensor of bool values |
on_true | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
on_false | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.select_and_scatter
(mhlo::SelectAndScatterOp)
SelectAndScatter operation
Scatters the values from the source
tensor using scatter
based on the outcome of reduce_window
of the input
tensor using select
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter
예:
%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GE>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
window_dimensions = dense<[3, 1]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>,
padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>
Traits: RecursiveMemoryEffects
인터페이스: InferTypeOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
source | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.send
(mhlo::SendOp)
Send operation
Sends inputs
to a channel channel_id
and produces a result
token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send
예:
%result = "mhlo.send"(%operand, %token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
is_host_transfer = false,
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token
인터페이스: InferTypeOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
source_target_pairs | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
피연산자 | 설명 |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
token | 토큰 |
결과:
결과 | 설명 |
---|---|
«unnamed» | 토큰 |
mhlo.set_dimension_size
(mhlo::SetDimensionSizeOp)
SetDimensionSize operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize
예:
%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
size | tensor of 32-bit signless integer values |
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.shift_left
(mhlo::ShiftLeftOp)
ShiftLeft operation
통사론:
operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise left-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left
예:
%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.shift_right_arithmetic
(mhlo::ShiftRightArithmeticOp)
ShiftRightArithmetic operation
통사론:
operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise arithmetic right-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic
예:
%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.shift_right_logical
(mhlo::ShiftRightLogicalOp)
ShiftRightLogical operation
통사론:
operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise logical right-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical
예:
%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.sign
(mhlo::SignOp)
Sign operation
통사론:
operation ::= `mhlo.sign` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Returns the sign of the operand
element-wise and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign
예:
%result = mhlo.sign %operand : tensor<7xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.sine
(mhlo::SineOp)
Sine operation
통사론:
operation ::= `mhlo.sine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sine operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine
예:
%result = mhlo.sine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.sinh
(mhlo::SinhOp)
Sinh operation
통사론:
operation ::= `mhlo.sinh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sinh operation on operand
tensor and produces a result
tensor.
예:
%result = mhlo.sinh %operand : tensor<2x2xf32>
Traits: CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Operands:
피연산자 | 설명 |
---|---|
operand | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
결과:
결과 | 설명 |
---|---|
result | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.slice
(mhlo::SliceOp)
Slice operation
Extracts a slice from the operand
using statically-computed starting indices and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
예:
%result = "mhlo.slice" (%operand) {
start_indices = dense<[1, 2]> : tensor<2xi64>,
limit_indices = dense<[3, 4]> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
start_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
limit_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.sort
(mhlo::SortOp)
Sort operation
Sorts a variadic number of tensors in inputs
together, according to a custom comparator
, along the given dimension
and produces a variadic number of tensors as results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort
예:
%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
%predicate = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
dimension = 0 : i64,
is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)
Traits: InferTensorType
, RecursiveMemoryEffects
, SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
is_stable | ::mlir::BoolAttr | bool attribute |
Operands:
피연산자 | 설명 |
---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.sqrt
(mhlo::SqrtOp)
Sqrt operation
통사론:
operation ::= `mhlo.sqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise square root operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt
예:
%result = mhlo.sqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.stochastic_convert
(mhlo::StochasticConvertOp)
StochasticConvert operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295
Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.
Traits: AlwaysSpeculatableImplTrait
, Elementwise
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
random | ranked tensor of 2/4/8/16/32/64-bit unsigned integer values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.subtract
(mhlo::SubtractOp)
Subtract operation
통사론:
operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise subtraction of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract
예:
%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.tan
(mhlo::TanOp)
Tan operation
통사론:
operation ::= `mhlo.tan` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954
Informally, this operation returns Tan(operand)
element-wise.
예:
%0 = mhlo.tan %arg0 : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.tanh
(mhlo::TanhOp)
Tanh operation
통사론:
operation ::= `mhlo.tanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise hyperbolic tangent operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh
예:
%result = mhlo.tanh %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.topk
(mhlo::TopKOp)
TopK operation
통사론:
operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
type($operand) `->` `(`type($values)`,` type($indices)`)`
Returns top k
values and their indices, along the last dimension of the operand if largest=true
or the bottom k
values if largest=false
.
See: https://www.tensorflow.org/xla/operation_semantics#top-k
예:
%values, %indices = mhlo.topk(%operand, k=5, largest=true)
: tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)
Traits: InferTensorType
, RecursiveMemoryEffects
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
k | ::mlir::IntegerAttr | 64-bit signless integer attribute |
largest | ::mlir::BoolAttr | bool attribute |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
values | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
indices | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.torch_index_select
(mhlo::TorchIndexSelectOp)
TorchIndexSelect operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html
The batch_dims
attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.
예:
%result = "mhlo.torch_index_select"(%operand, %index) {
dim = 2 : i64,
batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
dim | ::mlir::IntegerAttr | 64-bit signless integer attribute |
batch_dims | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
index | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.trace
(mhlo::TraceOp)
Trace operation
통사론:
operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604
It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.
예:
mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
tag | ::mlir::StringAttr | string attribute |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.transpose
(mhlo::TransposeOp)
Transpose operation
Permutes the dimensions of operand
tensor using permutation
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose
예:
%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
permutation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.triangular_solve
(mhlo::TriangularSolveOp)
TriangularSolve operation
Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve
예:
%result = "mhlo.triangular_solve"(%a, %b) {
left_side = true,
lower = true,
unit_diagonal = false,
transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
left_side | ::mlir::BoolAttr | bool attribute |
lower | ::mlir::BoolAttr | bool attribute |
unit_diagonal | ::mlir::BoolAttr | bool attribute |
transpose_a | ::mlir::mhlo::TransposeAttr | Transpose options |
Operands:
피연산자 | 설명 |
---|---|
a | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
b | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
결과:
결과 | 설명 |
---|---|
«unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.tuple
(mhlo::TupleOp)
Tuple operation
통사론:
operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))
Produces a result
tuple from values val
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple
예:
%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
val | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
결과:
결과 | 설명 |
---|---|
result | nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.uniform_dequantize
(mhlo::UniformDequantizeOp)
UniformDequantize operation
통사론:
operation ::= `mhlo.uniform_dequantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of quantized tensor operand
to a floating-point tensor result
according to the quantization parameters defined by the operand
type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize
예:
%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, InferTensorType
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of per-tensor integer quantized or per-axis integer quantized values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.uniform_quantize
(mhlo::UniformQuantizeOp)
UniformQuantize operation
통사론:
operation ::= `mhlo.uniform_quantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of floating-point tensor or quantized tensor operand
to a quantized tensor result
according to the quantization parameters defined by the result
type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize
예:
%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of per-tensor integer quantized or per-axis integer quantized values |
mhlo.while
(mhlo::WhileOp)
While operation
Produces the output from executing body
function 0 or more times while the cond
function outputs true
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while
예:
%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction LT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)
Traits: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferTypeOpInterface
, OpAsmOpInterface
Operands:
피연산자 | 설명 |
---|---|
operand | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
결과:
결과 | 설명 |
---|---|
«unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.xla.rng_get_and_update_state
(mhlo::XlaRngGetAndUpdateStateOp)
XlaRngGetAndUpdateState operation
통사론:
operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.
The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.
인터페이스: InferTypeOpInterface
속성:
기인하다 | MLIR 유형 | 설명 |
---|---|---|
delta | ::mlir::IntegerAttr | 64-bit signless integer attribute |
결과:
결과 | 설명 |
---|---|
«unnamed» | statically shaped tensor of 64-bit unsigned integer values |
mhlo.xor
(mhlo::XorOp)
Xor operation
통사론:
operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise XOR of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor
예:
%result = mhlo.xor %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
효과: MemoryEffects::Effect{}
Operands:
피연산자 | 설명 |
---|---|
lhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
결과:
결과 | 설명 |
---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
속성
ArgResultAliasAttr
Attribute that models the alias relationship of entry function argument
This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex
. The argTupleIndices
and resultTupleIndices
are used to index into nested tuples in operand and result respectively. If isMustAlias
is true then the operand-result pair must alias.
This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1
may alias 0-th result.
func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
mhlo.result_alias<result_index = [2], ...>}
) -> tensor<2xf32>, tensor<3xf32> {
// function body ...
}
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
argTupleIndices | ::llvm::ArrayRef<int64_t> | 차원 |
resultIndex | int64_t | |
resultTupleIndices | ::llvm::ArrayRef<int64_t> | 차원 |
isMustAlias | bool |
ChannelHandleAttr
Two 64-bit integers 'handle' and 'type'
통사론:
#mhlo.channel_handle<
int64_t, # handle
int64_t # type
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
핸들 | int64_t | |
유형 | int64_t |
ComparisonDirectionAttr
Which comparison operation to perform.
통사론:
#mhlo.comparison_direction<
::mlir::mhlo::ComparisonDirection # value
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
값 | ::mlir::mhlo::ComparisonDirection | an enum of type ComparisonDirection |
ComparisonTypeAttr
Which comparison type to use.
통사론:
#mhlo.comparison_type<
::mlir::mhlo::ComparisonType # value
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
값 | ::mlir::mhlo::ComparisonType | an enum of type ComparisonType |
ConvDimensionNumbersAttr
Structure of dimension information for conv op
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
inputBatchDimension | int64_t | |
inputFeatureDimension | int64_t | |
inputSpatialDimensions | ::llvm::ArrayRef<int64_t> | 차원 |
kernelInputFeatureDimension | int64_t | |
kernelOutputFeatureDimension | int64_t | |
kernelSpatialDimensions | ::llvm::ArrayRef<int64_t> | 차원 |
outputBatchDimension | int64_t | |
outputFeatureDimension | int64_t | |
outputSpatialDimensions | ::llvm::ArrayRef<int64_t> | 차원 |
CrossProgramPrefetchAttr
Argument that is prefetched from another program
통사론:
#mhlo.cross_program_prefetch<
int64_t, # parameter
::llvm::ArrayRef<int64_t>, # indices
std::optional<int64_t> # offset
>
This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr
, parameter
tells us which argument of the main
function of the module is prefetched, and indices
is a shape index telling us what subshape of that argument is prefetched.
A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices
is the shape achieved after indexing by each element of indices
in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>>
is tensor<i32>
.
An empty value for indices
means the whole shape is prefetched.
예를 들어,
module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
}
func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
%2 = "mhlo.async_done"(%1) {called_computation=@copy}
return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
}
}
The parameter = 0
tells us that the async copy of the 0
th parameter is a cross_program_prefetch
, while the index
of [0]
tells us that the 0
th element of the tuple is prefetched while the other element of the tuple is not.
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
매개변수 | int64_t | |
지수 | ::llvm::ArrayRef<int64_t> | 차원 |
오프셋 | std::optional<int64_t> |
CustomCallScheduleAttr
Specifies the desired schedule for the custom-call.
통사론:
#mhlo.custom_call_schedule<
::mlir::mhlo::CustomCallSchedule # value
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
값 | ::mlir::mhlo::CustomCallSchedule | an enum of type CustomCallSchedule |
DequantizeModeAttr
_Dequantization mode. Only MIN COMBINED is supported.
통사론:
#mhlo.dequantize_mode<
::mlir::mhlo::DequantizeMode # value
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
값 | ::mlir::mhlo::DequantizeMode | an enum of type DequantizeMode |
DomainKindAttr
Kind of domain metatdata attached to an HLO domain.
통사론:
#mhlo.kind<
::mlir::mhlo::DomainKind # value
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
값 | ::mlir::mhlo::DomainKind | an enum of type DomainKind |
DotAlgorithmAttr
Attribute that models the algorithm constraints to use for computing dot.
통사론:
#mhlo.dot_algorithm<
Type, # lhsPrecisionType
Type, # rhsPrecisionType
Type, # accumulationType
int64_t, # lhsComponentCount
int64_t, # rhsComponentCount
int64_t, # numPrimitiveOperations
bool # allowImpreciseAccumulation
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
lhsPrecisionType | Type | |
rhsPrecisionType | Type | |
accumulationType | Type | |
lhsComponentCount | int64_t | |
rhsComponentCount | int64_t | |
numPrimitiveOperations | int64_t | |
allowImpreciseAccumulation | bool |
DotDimensionNumbersAttr
Attribute that models the dimension information for dot.
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
lhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | 차원 |
rhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | 차원 |
lhsContractingDimensions | ::llvm::ArrayRef<int64_t> | 차원 |
rhsContractingDimensions | ::llvm::ArrayRef<int64_t> | 차원 |
FftTypeAttr
XLA fast fourier transform type.
통사론:
#mhlo.fft_type<
::mlir::mhlo::FftType # value
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
값 | ::mlir::mhlo::FftType | an enum of type FftType |
FusionKindAttr
Fusion kind
통사론:
#mhlo.fusion_kind<
::mlir::mhlo::FusionKind # value
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
값 | ::mlir::mhlo::FusionKind | an enum of type FusionKind |
GatherDimensionNumbersAttr
Attribute that models the dimension information for gather
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
offsetDims | ::llvm::ArrayRef<int64_t> | 차원 |
collapsedSliceDims | ::llvm::ArrayRef<int64_t> | 차원 |
operandBatchingDims | ::llvm::ArrayRef<int64_t> | 차원 |
startIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | 차원 |
startIndexMap | ::llvm::ArrayRef<int64_t> | 차원 |
indexVectorDim | int64_t |
OutputOperandAliasAttr
Attribute that models the alias relationship of output and operand of a CustomCall op
통사론:
#mhlo.output_operand_alias<
::llvm::ArrayRef<int64_t>, # outputTupleIndices
int64_t, # operandIndex
::llvm::ArrayRef<int64_t> # operandTupleIndices
>
This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index
. The output_tuple_indices
and operand_tuple_indices
are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.
See https://www.tensorflow.org/xla/aliasing
Example when used as array with in mhlo.custom-call:
%0 = "mhlo.custom_call"(%arg0, %arg1) {
// other attributes
output_operand_alias = [
#mhlo.output_operand_alias<output_tuple_indices = [0],
operand_index = 0,
operand_tuple_indices = [1]>
]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>
The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
outputTupleIndices | ::llvm::ArrayRef<int64_t> | 차원 |
operandIndex | int64_t | |
operandTupleIndices | ::llvm::ArrayRef<int64_t> | 차원 |
PrecisionAttr
XLA precision for an operand. Has backend specific meaning.
통사론:
#mhlo.precision<
::mlir::mhlo::Precision # value
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
값 | ::mlir::mhlo::Precision | an enum of type Precision |
RaggedDotDimensionNumbersAttr
Attribute that models the dimension information for ragged dot.
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
dotDimensionNumbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
lhsRaggedDimensions | ::llvm::ArrayRef<int64_t> | 차원 |
rhsGroupDimensions | ::llvm::ArrayRef<int64_t> | 차원 |
ResultAccuracyAttr
The requested accuracy for unary ops.
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
atol | APFloat | |
rtol | APFloat | |
ulps | int64_t | |
방법 | ::mlir::mhlo::ResultAccuracyModeAttr | XLA result accuracy mode. |
ResultAccuracyModeAttr
XLA result accuracy mode.
통사론:
#mhlo.result_accuracy_mode<
::mlir::mhlo::ResultAccuracyMode # value
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
값 | ::mlir::mhlo::ResultAccuracyMode | an enum of type ResultAccuracyMode |
RngAlgorithmAttr
XLA PRNG algorithm to be used.
통사론:
#mhlo.rng_algorithm<
::mlir::mhlo::RngAlgorithm # value
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
값 | ::mlir::mhlo::RngAlgorithm | an enum of type RngAlgorithm |
RngDistributionAttr
XLA PRNG distribution to be used.
통사론:
#mhlo.rng_distribution<
::mlir::mhlo::RngDistribution # value
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
값 | ::mlir::mhlo::RngDistribution | an enum of type RngDistribution |
ScatterDimensionNumbersAttr
Attribute that models the dimension information for scatter
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
updateWindowDims | ::llvm::ArrayRef<int64_t> | 차원 |
insertedWindowDims | ::llvm::ArrayRef<int64_t> | 차원 |
inputBatchingDims | ::llvm::ArrayRef<int64_t> | 차원 |
scatterIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | 차원 |
scatterDimsToOperandDims | ::llvm::ArrayRef<int64_t> | 차원 |
indexVectorDim | int64_t |
TransposeAttr
Transpose options
통사론:
#mhlo.transpose<
::mlir::mhlo::Transpose # value
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
값 | ::mlir::mhlo::Transpose | an enum of type Transpose |
TypeExtensionsAttr
Attribute that extends tensor type with MHLO type properties.
통사론:
#mhlo.type_extensions<
::llvm::ArrayRef<int64_t> # bounds
>
This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding
field of the tensor type.
See HLO_BoundedAttrInterface
for documentation for bounds
.
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
범위 | ::llvm::ArrayRef<int64_t> |
유형
AsyncBundleType
Opaque collection of other types
통사론:
!mhlo.async_bundle<
::llvm::ArrayRef<Type> # types
>
매개변수:
매개변수 | C++ type | 설명 |
---|---|---|
유형 | ::llvm::ArrayRef<Type> |
열거형
ComparisonDirection
Which comparison operation to perform.
사례:
상징 | 값 | 끈 |
---|---|---|
이퀄라이저 | 0 | 이퀄라이저 |
북동 | 1 | 북동 |
GE | 2 | GE |
지티 | 3 | 지티 |
르 | 4 | 르 |
롱 | 5 | 롱 |
ComparisonType
Which comparison type to use.
사례:
상징 | 값 | 끈 |
---|---|---|
NOTYPE | 0 | NOTYPE |
뜨다 | 1 | 뜨다 |
TOTALORDER | 2 | TOTALORDER |
서명됨 | 3 | 서명됨 |
UNSIGNED | 4 | UNSIGNED |
CustomCallApiVersion
Custom call API version
사례:
상징 | 값 | 끈 |
---|---|---|
API_VERSION_UNSPECIFIED | 0 | API_VERSION_UNSPECIFIED |
API_VERSION_ORIGINAL | 1 | API_VERSION_ORIGINAL |
API_VERSION_STATUS_RETURNING | 2 | API_VERSION_STATUS_RETURNING |
API_VERSION_STATUS_RETURNING_UNIFIED | 3 | API_VERSION_STATUS_RETURNING_UNIFIED |
API_VERSION_TYPED_FFI | 4 | API_VERSION_TYPED_FFI |
CustomCallSchedule
Specifies the desired schedule for the custom-call.
사례:
상징 | 값 | 끈 |
---|---|---|
없음 | 0 | 없음 |
최신 | 1 | 최신 |
EARLIEST | 2 | EARLIEST |
DequantizeMode
_Dequantization mode. Only MIN COMBINED is supported.
사례:
상징 | 값 | 끈 |
---|---|---|
MIN_COMBINED | 0 | MIN_COMBINED |
DomainKind
Kind of domain metatdata attached to an HLO domain.
사례:
상징 | 값 | 끈 |
---|---|---|
sharding | 0 | sharding |
FftType
XLA fast fourier transform type.
사례:
상징 | 값 | 끈 |
---|---|---|
FFT | 0 | FFT |
IFFT | 1 | IFFT |
RFFT | 2 | RFFT |
IRFFT | 3 | IRFFT |
FusionKind
Fusion kind
사례:
상징 | 값 | 끈 |
---|---|---|
kLoop | 0 | kLoop |
kInput | 1 | kInput |
kOutput | 2 | kOutput |
kCustom | 3 | kCustom |
정도
XLA precision for an operand. Has backend specific meaning.
사례:
상징 | 값 | 끈 |
---|---|---|
기본 | 0 | 기본 |
높은 | 1 | 높은 |
제일 높은 | 2 | 제일 높은 |
ResultAccuracyMode
XLA result accuracy mode.
사례:
상징 | 값 | 끈 |
---|---|---|
기본 | 0 | 기본 |
제일 높은 | 1 | 제일 높은 |
용인 | 2 | 용인 |
RngAlgorithm
XLA PRNG algorithm to be used.
사례:
상징 | 값 | 끈 |
---|---|---|
기본 | 0 | 기본 |
THREE_FRY | 1 | THREE_FRY |
PHILOX | 2 | PHILOX |
RngDistribution
XLA PRNG distribution to be used.
사례:
상징 | 값 | 끈 |
---|---|---|
제복 | 1 | 제복 |
정상 | 2 | 정상 |
바꾸어 놓다
Transpose options
사례:
상징 | 값 | 끈 |
---|---|---|
TRANSPOSE_INVALID | 0 | TRANSPOSE_INVALID |
NO_TRANSPOSE | 1 | NO_TRANSPOSE |
바꾸어 놓다 | 2 | 바꾸어 놓다 |
ADJOINT | 3 | ADJOINT |