Google I/O에 참여해 주셔서 감사합니다. 주문형 모든 세션 보기 주문형 시청

TensorFlow는 머신러닝을 위한 엔드 투 엔드 오픈소스 플랫폼입니다.

TensorFlow를 사용하면 초보자와 전문가 모두 머신러닝 모델을 쉽게 만들 수 있습니다. 시작하려면 아래의 섹션을 참조하세요.

튜토리얼 보기

튜토리얼에서는 완벽한 엔드 투 엔드 예제와 함께 TensorFlow를 사용하는 방법을 보여줍니다.

가이드 보기

가이드는 TensorFlow의 개념과 구성요소에 관해 설명합니다.

초보자용

The best place to start is with the user-friendly Sequential API. You can create models by plugging together building blocks. Run the “Hello World” example below, then visit the tutorials to learn more.

To learn ML, check out our education page. Begin with curated curriculums to improve your skills in foundational ML areas.

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

전문가용

The Subclassing API provides a define-by-run interface for advanced research. Create a class for your model, then write the forward pass imperatively. Easily author custom layers, activations, and training loops. Run the “Hello World” example below, then visit the tutorials to learn more.

class MyModel(tf.keras.Model):
  def __init__(self):
    super(MyModel, self).__init__()
    self.conv1 = Conv2D(32, 3, activation='relu')
    self.flatten = Flatten()
    self.d1 = Dense(128, activation='relu')
    self.d2 = Dense(10, activation='softmax')

  def call(self, x):
    x = self.conv1(x)
    x = self.flatten(x)
    x = self.d1(x)
    return self.d2(x)
model = MyModel()

with tf.GradientTape() as tape:
  logits = model(images)
  loss_value = loss(logits, labels)
grads = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))

일반적인 문제 해결책

프로젝트에 도움이 되는 단계별 튜토리얼을 탐색하세요.

초보자용
첫 번째 신경망

빠르게 진행되는 전체 TensorFlow 프로그램 개요에서 운동화 및 셔츠와 같은 의류 이미지를 분류하도록 신경망을 학습시키세요.

전문가용
생성적 적대 신경망(GAN)

손으로 쓴 숫자의 이미지를 생성하도록 Keras Subclassing API를 사용하여 생성적 적대 신경망(GAN)을 학습시키세요.

전문가용
어텐션을 사용한 인공신경망 기계 번역

Keras Subclassing API를 사용하여 스페인어에서 영어로 번역하도록 sequence-to-sequence 모델을 학습시키세요.

뉴스 및 공지사항

Check out our blog for additional updates, and subscribe to our TensorFlow newsletter to get the latest announcements sent directly to your inbox.