Cytując TensorFlow

TensorFlow publikuje DOI dla bazy kodu open source za pomocą Zenodo.org: 10.5281/zenodo.4724125

Poniżej wymieniono oficjalne księgi TensorFlow do cytowania.

Uczenie maszynowe na dużą skalę w heterogenicznych systemach rozproszonych

Uzyskaj dostęp do tego opracowania.

Streszczenie: TensorFlow to interfejs do wyrażania algorytmów uczenia maszynowego oraz implementacja do wykonywania takich algorytmów. Obliczenia wyrażone za pomocą TensorFlow można wykonać z niewielkimi zmianami lub bez nich w szerokiej gamie systemów heterogenicznych, począwszy od urządzeń mobilnych, takich jak telefony i tablety, po wielkoskalowe systemy rozproszone składające się z setek maszyn i tysięcy urządzeń obliczeniowych, takich jak karty GPU . System jest elastyczny i można go używać do wyrażania szerokiej gamy algorytmów, w tym algorytmów uczenia i wnioskowania dla modeli głębokich sieci neuronowych, a także był używany do prowadzenia badań i wdrażania systemów uczenia maszynowego do produkcji w kilkunastu obszarach informatyka i inne dziedziny, w tym rozpoznawanie mowy, widzenie komputerowe, robotyka, wyszukiwanie informacji, przetwarzanie języka naturalnego, ekstrakcja informacji geograficznych i komputerowe odkrywanie leków. W artykule opisano interfejs TensorFlow i implementację tego interfejsu, którą zbudowaliśmy w Google. Interfejs API TensorFlow i implementacja referencyjna zostały wydane jako pakiet open source na licencji Apache 2.0 w listopadzie 2015 r. i są dostępne na stronie www.tensorflow.org.

W formacie BibTeX-a

Jeśli w swoich badaniach korzystasz z TensorFlow i chciałbyś przytoczyć system TensorFlow, sugerujemy zacytowanie tego oficjalnego dokumentu.

@misc{tensorflow2015-whitepaper,
title={ {TensorFlow}: Large-Scale Machine Learning on Heterogeneous Systems},
url={https://www.tensorflow.org/},
note={Software available from tensorflow.org},
author={
    Mart\'{i}n~Abadi and
    Ashish~Agarwal and
    Paul~Barham and
    Eugene~Brevdo and
    Zhifeng~Chen and
    Craig~Citro and
    Greg~S.~Corrado and
    Andy~Davis and
    Jeffrey~Dean and
    Matthieu~Devin and
    Sanjay~Ghemawat and
    Ian~Goodfellow and
    Andrew~Harp and
    Geoffrey~Irving and
    Michael~Isard and
    Yangqing Jia and
    Rafal~Jozefowicz and
    Lukasz~Kaiser and
    Manjunath~Kudlur and
    Josh~Levenberg and
    Dandelion~Man\'{e} and
    Rajat~Monga and
    Sherry~Moore and
    Derek~Murray and
    Chris~Olah and
    Mike~Schuster and
    Jonathon~Shlens and
    Benoit~Steiner and
    Ilya~Sutskever and
    Kunal~Talwar and
    Paul~Tucker and
    Vincent~Vanhoucke and
    Vijay~Vasudevan and
    Fernanda~Vi\'{e}gas and
    Oriol~Vinyals and
    Pete~Warden and
    Martin~Wattenberg and
    Martin~Wicke and
    Yuan~Yu and
    Xiaoqiang~Zheng},
  year={2015},
}

Lub w formie tekstowej:

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike Schuster,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

TensorFlow: system uczenia maszynowego na dużą skalę

Uzyskaj dostęp do tego opracowania.

Streszczenie: TensorFlow to system uczenia maszynowego, który działa na dużą skalę i w heterogenicznych środowiskach. TensorFlow używa wykresów przepływu danych do reprezentowania obliczeń, stanu współdzielonego i operacji, które mutują ten stan. Mapuje węzły wykresu przepływu danych na wielu maszynach w klastrze oraz w obrębie maszyny na wiele urządzeń obliczeniowych, w tym wielordzeniowych procesorów, procesorów graficznych ogólnego przeznaczenia i specjalnie zaprojektowanych układów ASIC znanych jako jednostki przetwarzające Tensor (TPU). Architektura ta zapewnia twórcom aplikacji elastyczność: podczas gdy w poprzednich projektach „serwerów parametrów” zarządzanie współdzielonym stanem jest wbudowane w system, TensorFlow umożliwia programistom eksperymentowanie z nowatorskimi optymalizacjami i algorytmami szkoleniowymi. TensorFlow obsługuje różnorodne aplikacje, ze szczególnym uwzględnieniem uczenia i wnioskowania na temat głębokich sieci neuronowych. Kilka usług Google korzysta z TensorFlow w środowisku produkcyjnym. Wydaliśmy go jako projekt typu open source i stał się on powszechnie stosowany w badaniach nad uczeniem maszynowym. W tym artykule opisujemy model przepływu danych TensorFlow i demonstrujemy imponującą wydajność, jaką TensorFlow osiąga w kilku rzeczywistych aplikacjach.