DQN C51 / Rainbow

Ver no TensorFlow.org Executar no Google Colab Ver fonte no GitHub Baixar caderno

Introdução

Este exemplo mostra como treinar um categórico DQN (C51) agente no ambiente Cartpole usando a biblioteca TF-agentes.

Ambiente de cartpole

Certifique-se de dar uma olhada através do tutorial DQN como um pré-requisito. Este tutorial presumirá familiaridade com o tutorial DQN; ele se concentrará principalmente nas diferenças entre DQN e C51.

Configurar

Se você ainda não instalou tf-agents, execute:

sudo apt-get update
sudo apt-get install -y xvfb ffmpeg freeglut3-dev
pip install 'imageio==2.4.0'
pip install pyvirtualdisplay
pip install tf-agents
pip install pyglet
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import base64
import imageio
import IPython
import matplotlib
import matplotlib.pyplot as plt
import PIL.Image
import pyvirtualdisplay

import tensorflow as tf

from tf_agents.agents.categorical_dqn import categorical_dqn_agent
from tf_agents.drivers import dynamic_step_driver
from tf_agents.environments import suite_gym
from tf_agents.environments import tf_py_environment
from tf_agents.eval import metric_utils
from tf_agents.metrics import tf_metrics
from tf_agents.networks import categorical_q_network
from tf_agents.policies import random_tf_policy
from tf_agents.replay_buffers import tf_uniform_replay_buffer
from tf_agents.trajectories import trajectory
from tf_agents.utils import common

# Set up a virtual display for rendering OpenAI gym environments.
display = pyvirtualdisplay.Display(visible=0, size=(1400, 900)).start()

Hiperparâmetros

env_name = "CartPole-v1" # @param {type:"string"}
num_iterations = 15000 # @param {type:"integer"}

initial_collect_steps = 1000  # @param {type:"integer"} 
collect_steps_per_iteration = 1  # @param {type:"integer"}
replay_buffer_capacity = 100000  # @param {type:"integer"}

fc_layer_params = (100,)

batch_size = 64  # @param {type:"integer"}
learning_rate = 1e-3  # @param {type:"number"}
gamma = 0.99
log_interval = 200  # @param {type:"integer"}

num_atoms = 51  # @param {type:"integer"}
min_q_value = -20  # @param {type:"integer"}
max_q_value = 20  # @param {type:"integer"}
n_step_update = 2  # @param {type:"integer"}

num_eval_episodes = 10  # @param {type:"integer"}
eval_interval = 1000  # @param {type:"integer"}

Ambiente

Carregue o ambiente como antes, com um para treinamento e outro para avaliação. Aqui usamos CartPole-v1 (vs. CartPole-v0 no tutorial DQN), que tem uma recompensa máxima maior de 500 em vez de 200.

train_py_env = suite_gym.load(env_name)
eval_py_env = suite_gym.load(env_name)

train_env = tf_py_environment.TFPyEnvironment(train_py_env)
eval_env = tf_py_environment.TFPyEnvironment(eval_py_env)

Agente

C51 é um algoritmo de Q-learning baseado em DQN. Como o DQN, ele pode ser usado em qualquer ambiente com um espaço de ação discreto.

A principal diferença entre C51 e DQN é que em vez de simplesmente prever o valor Q para cada par de ação de estado, C51 prevê um modelo de histograma para a distribuição de probabilidade do valor Q:

Exemplo de distribuição C51

Ao aprender a distribuição ao invés de simplesmente o valor esperado, o algoritmo é capaz de ficar mais estável durante o treinamento, levando a um melhor desempenho final. Isso é particularmente verdadeiro em situações com distribuições de valores bimodais ou mesmo multimodais, onde uma única média não fornece uma imagem precisa.

Para treinar em distribuições de probabilidade em vez de em valores, C51 deve realizar alguns cálculos de distribuição complexos para calcular sua função de perda. Mas não se preocupe, tudo isso é cuidado para você no TF-Agents!

Para criar um agente C51, primeiro precisamos criar um CategoricalQNetwork . A API do CategoricalQNetwork é a mesma que a do QNetwork , exceto que não é um argumento adicional num_atoms . Isso representa o número de pontos de suporte em nossas estimativas de distribuição de probabilidade. (A imagem acima inclui 10 pontos de suporte, cada um representado por uma barra azul vertical.) Como você pode ver pelo nome, o número padrão de átomos é 51.

categorical_q_net = categorical_q_network.CategoricalQNetwork(
    train_env.observation_spec(),
    train_env.action_spec(),
    num_atoms=num_atoms,
    fc_layer_params=fc_layer_params)

Precisamos também de um optimizer para treinar a rede que acabou de criar, e uma train_step_counter variável para manter o controle de quantas vezes a rede foi atualizado.

Note-se que uma outra diferença significativa de baunilha DqnAgent é que agora precisa especificar min_q_value e max_q_value como argumentos. Eles especificam os valores mais extremos do suporte (em outras palavras, o mais extremo dos 51 átomos de cada lado). Certifique-se de escolhê-los apropriadamente para o seu ambiente específico. Aqui usamos -20 e 20.

optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)

train_step_counter = tf.Variable(0)

agent = categorical_dqn_agent.CategoricalDqnAgent(
    train_env.time_step_spec(),
    train_env.action_spec(),
    categorical_q_network=categorical_q_net,
    optimizer=optimizer,
    min_q_value=min_q_value,
    max_q_value=max_q_value,
    n_step_update=n_step_update,
    td_errors_loss_fn=common.element_wise_squared_loss,
    gamma=gamma,
    train_step_counter=train_step_counter)
agent.initialize()

Uma última coisa a notar é que nós também adicionamos um argumento para atualizações uso n passo com \(n\) = 2. Em uma única etapa de ensino-Q (\(n\) = 1), só calcular o erro entre os valores de Q na etapa de tempo atual e na próxima etapa de tempo usando o retorno de etapa única (com base na equação de otimização de Bellman). O retorno de uma única etapa é definido como:

\(G_t = R_{t + 1} + \gamma V(s_{t + 1})\)

onde definimos \(V(s) = \max_a{Q(s, a)}\).

Atualizações N-passo envolver a expansão da função de etapa única retorno padrão \(n\) vezes:

\(G_t^n = R_{t + 1} + \gamma R_{t + 2} + \gamma^2 R_{t + 3} + \dots + \gamma^n V(s_{t + n})\)

Atualizações N-passo habilitar o agente para o arranque de mais no futuro, e com o valor correto de \(n\), isso muitas vezes leva a aprender mais rápido.

Embora atualizações C51 e n-Step são muitas vezes combinados com repetição priorizada para formar o núcleo do agente do arco-íris , vimos nenhuma melhoria mensurável da implementação repetição priorizados. Além disso, descobrimos que, ao combinar nosso agente C51 apenas com atualizações de n etapas, nosso agente tem um desempenho tão bom quanto outros agentes Rainbow na amostra de ambientes Atari que testamos.

Métricas e Avaliação

A métrica mais comum usada para avaliar uma política é o retorno médio. O retorno é a soma das recompensas obtidas durante a execução de uma política em um ambiente para um episódio, e normalmente fazemos a média disso em alguns episódios. Podemos calcular a métrica de retorno médio da seguinte maneira.

def compute_avg_return(environment, policy, num_episodes=10):

  total_return = 0.0
  for _ in range(num_episodes):

    time_step = environment.reset()
    episode_return = 0.0

    while not time_step.is_last():
      action_step = policy.action(time_step)
      time_step = environment.step(action_step.action)
      episode_return += time_step.reward
    total_return += episode_return

  avg_return = total_return / num_episodes
  return avg_return.numpy()[0]


random_policy = random_tf_policy.RandomTFPolicy(train_env.time_step_spec(),
                                                train_env.action_spec())

compute_avg_return(eval_env, random_policy, num_eval_episodes)

# Please also see the metrics module for standard implementations of different
# metrics.
20.0

Coleção de dados

Como no tutorial DQN, configure o buffer de reprodução e a coleta de dados inicial com a política aleatória.

replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
    data_spec=agent.collect_data_spec,
    batch_size=train_env.batch_size,
    max_length=replay_buffer_capacity)

def collect_step(environment, policy):
  time_step = environment.current_time_step()
  action_step = policy.action(time_step)
  next_time_step = environment.step(action_step.action)
  traj = trajectory.from_transition(time_step, action_step, next_time_step)

  # Add trajectory to the replay buffer
  replay_buffer.add_batch(traj)

for _ in range(initial_collect_steps):
  collect_step(train_env, random_policy)

# This loop is so common in RL, that we provide standard implementations of
# these. For more details see the drivers module.

# Dataset generates trajectories with shape [BxTx...] where
# T = n_step_update + 1.
dataset = replay_buffer.as_dataset(
    num_parallel_calls=3, sample_batch_size=batch_size,
    num_steps=n_step_update + 1).prefetch(3)

iterator = iter(dataset)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/data/experimental/ops/counter.py:66: scan (from tensorflow.python.data.experimental.ops.scan_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.scan(...) instead
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/autograph/impl/api.py:382: ReplayBuffer.get_next (from tf_agents.replay_buffers.replay_buffer) is deprecated and will be removed in a future version.
Instructions for updating:
Use `as_dataset(..., single_deterministic_pass=False) instead.

Treinando o agente

O loop de treinamento envolve a coleta de dados do ambiente e a otimização das redes do agente. Ao longo do caminho, avaliaremos ocasionalmente a política do agente para ver como estamos nos saindo.

O procedimento a seguir levará cerca de 7 minutos para ser executado.

try:
  %%time
except:
  pass

# (Optional) Optimize by wrapping some of the code in a graph using TF function.
agent.train = common.function(agent.train)

# Reset the train step
agent.train_step_counter.assign(0)

# Evaluate the agent's policy once before training.
avg_return = compute_avg_return(eval_env, agent.policy, num_eval_episodes)
returns = [avg_return]

for _ in range(num_iterations):

  # Collect a few steps using collect_policy and save to the replay buffer.
  for _ in range(collect_steps_per_iteration):
    collect_step(train_env, agent.collect_policy)

  # Sample a batch of data from the buffer and update the agent's network.
  experience, unused_info = next(iterator)
  train_loss = agent.train(experience)

  step = agent.train_step_counter.numpy()

  if step % log_interval == 0:
    print('step = {0}: loss = {1}'.format(step, train_loss.loss))

  if step % eval_interval == 0:
    avg_return = compute_avg_return(eval_env, agent.policy, num_eval_episodes)
    print('step = {0}: Average Return = {1:.2f}'.format(step, avg_return))
    returns.append(avg_return)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py:206: calling foldr_v2 (from tensorflow.python.ops.functional_ops) with back_prop=False is deprecated and will be removed in a future version.
Instructions for updating:
back_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.foldr(fn, elems, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.foldr(fn, elems))
step = 200: loss = 3.199000597000122
step = 400: loss = 2.083357810974121
step = 600: loss = 1.9901162385940552
step = 800: loss = 1.9055049419403076
step = 1000: loss = 1.7382612228393555
step = 1000: Average Return = 34.40
step = 1200: loss = 1.3624987602233887
step = 1400: loss = 1.548039197921753
step = 1600: loss = 1.4193217754364014
step = 1800: loss = 1.3339967727661133
step = 2000: loss = 1.1471226215362549
step = 2000: Average Return = 91.10
step = 2200: loss = 1.360352873802185
step = 2400: loss = 1.4253160953521729
step = 2600: loss = 0.9550995826721191
step = 2800: loss = 0.9822611808776855
step = 3000: loss = 1.0512573719024658
step = 3000: Average Return = 102.60
step = 3200: loss = 1.131516456604004
step = 3400: loss = 1.0834283828735352
step = 3600: loss = 0.8771724104881287
step = 3800: loss = 0.7854692935943604
step = 4000: loss = 0.7451740503311157
step = 4000: Average Return = 179.10
step = 4200: loss = 0.6963338851928711
step = 4400: loss = 0.8579068183898926
step = 4600: loss = 0.735978364944458
step = 4800: loss = 0.5723521709442139
step = 5000: loss = 0.6422518491744995
step = 5000: Average Return = 138.00
step = 5200: loss = 0.5242955684661865
step = 5400: loss = 0.869032621383667
step = 5600: loss = 0.7798122763633728
step = 5800: loss = 0.745892345905304
step = 6000: loss = 0.7540864944458008
step = 6000: Average Return = 155.80
step = 6200: loss = 0.6851651668548584
step = 6400: loss = 0.7417727112770081
step = 6600: loss = 0.7385923862457275
step = 6800: loss = 0.8823254108428955
step = 7000: loss = 0.6216408014297485
step = 7000: Average Return = 146.90
step = 7200: loss = 0.3905255198478699
step = 7400: loss = 0.5030156373977661
step = 7600: loss = 0.6326021552085876
step = 7800: loss = 0.6071780920028687
step = 8000: loss = 0.49069637060165405
step = 8000: Average Return = 332.70
step = 8200: loss = 0.7194125056266785
step = 8400: loss = 0.7707428932189941
step = 8600: loss = 0.42258384823799133
step = 8800: loss = 0.5215793251991272
step = 9000: loss = 0.6949542164802551
step = 9000: Average Return = 174.10
step = 9200: loss = 0.7312793731689453
step = 9400: loss = 0.5663323402404785
step = 9600: loss = 0.8518731594085693
step = 9800: loss = 0.5256152153015137
step = 10000: loss = 0.578148603439331
step = 10000: Average Return = 147.40
step = 10200: loss = 0.46965712308883667
step = 10400: loss = 0.5685954093933105
step = 10600: loss = 0.5819060802459717
step = 10800: loss = 0.792033851146698
step = 11000: loss = 0.5804982781410217
step = 11000: Average Return = 186.80
step = 11200: loss = 0.4973406195640564
step = 11400: loss = 0.33229681849479675
step = 11600: loss = 0.5267124176025391
step = 11800: loss = 0.585414469242096
step = 12000: loss = 0.6697092652320862
step = 12000: Average Return = 135.30
step = 12200: loss = 0.30732017755508423
step = 12400: loss = 0.490392804145813
step = 12600: loss = 0.28014713525772095
step = 12800: loss = 0.456543892621994
step = 13000: loss = 0.48237597942352295
step = 13000: Average Return = 182.70
step = 13200: loss = 0.5447070598602295
step = 13400: loss = 0.4602382481098175
step = 13600: loss = 0.5659506320953369
step = 13800: loss = 0.47906267642974854
step = 14000: loss = 0.4060840904712677
step = 14000: Average Return = 153.00
step = 14200: loss = 0.6457054018974304
step = 14400: loss = 0.4795544147491455
step = 14600: loss = 0.16895757615566254
step = 14800: loss = 0.5005109906196594
step = 15000: loss = 0.5339224338531494
step = 15000: Average Return = 165.10

Visualização

Enredos

Podemos traçar o retorno versus as etapas globais para ver o desempenho de nosso agente. Em Cartpole-v1 , o ambiente dá uma recompensa de +1 para cada passo de tempo as estadias pólo, e uma vez que o número máximo de etapas é de 500, o máximo retorno possível é também 500.

steps = range(0, num_iterations + 1, eval_interval)
plt.plot(steps, returns)
plt.ylabel('Average Return')
plt.xlabel('Step')
plt.ylim(top=550)
(19.485000991821288, 550.0)

png

Vídeos

É útil visualizar o desempenho de um agente, renderizando o ambiente em cada etapa. Antes de fazermos isso, vamos primeiro criar uma função para incorporar vídeos neste colab.

def embed_mp4(filename):
  """Embeds an mp4 file in the notebook."""
  video = open(filename,'rb').read()
  b64 = base64.b64encode(video)
  tag = '''
  <video width="640" height="480" controls>
    <source src="data:video/mp4;base64,{0}" type="video/mp4">
  Your browser does not support the video tag.
  </video>'''.format(b64.decode())

  return IPython.display.HTML(tag)

O código a seguir visualiza a política do agente para alguns episódios:

num_episodes = 3
video_filename = 'imageio.mp4'
with imageio.get_writer(video_filename, fps=60) as video:
  for _ in range(num_episodes):
    time_step = eval_env.reset()
    video.append_data(eval_py_env.render())
    while not time_step.is_last():
      action_step = agent.policy.action(time_step)
      time_step = eval_env.step(action_step.action)
      video.append_data(eval_py_env.render())

embed_mp4(video_filename)
WARNING:root:IMAGEIO FFMPEG_WRITER WARNING: input image is not divisible by macro_block_size=16, resizing from (400, 600) to (400, 608) to ensure video compatibility with most codecs and players. To prevent resizing, make your input image divisible by the macro_block_size or set the macro_block_size to None (risking incompatibility). You may also see a FFMPEG warning concerning speedloss due to data not being aligned.
[swscaler @ 0x5646eec183c0] Warning: data is not aligned! This can lead to a speed loss

O C51 tende a se sair um pouco melhor do que o DQN no CartPole-v1, mas a diferença entre os dois agentes se torna cada vez mais significativa em ambientes cada vez mais complexos. Por exemplo, no benchmark Atari 2600 completo, C51 demonstra uma melhoria de pontuação média de 126% sobre DQN após normalizar em relação a um agente aleatório. Melhorias adicionais podem ser obtidas incluindo atualizações de n etapas.

Para um mergulho mais profundo no algoritmo C51, ver uma perspectiva distributiva em Aprendizagem por Reforço (2017) .