Visualizza su TensorFlow.org | Esegui in Google Colab | Visualizza l'origine su GitHub | Scarica quaderno |
Panoramica
Questo tutorial si concentra sul flusso di dati da un elasticsearch cluster in una tf.data.Dataset
che viene poi utilizzato in combinazione con tf.keras
per la formazione e l'inferenza.
Elasticseach è principalmente un motore di ricerca distribuito che supporta l'archiviazione di dati strutturati, non strutturati, geospaziali, numerici ecc. Ai fini di questo tutorial, viene utilizzato un set di dati con record strutturati.
Pacchetti di installazione
elasticsearch
pacchetto viene utilizzato per la preparazione e la memorizzazione dei dati all'interno indici elasticsearch per solo scopo dimostrativo. Nei cluster di produzione del mondo reale con numerosi nodi, il cluster potrebbe ricevere i dati da connettori come logstash ecc.
Una volta che i dati sono disponibili nel cluster elasticsearch, solo tensorflow-io
è necessaria per lo streaming dei dati nei modelli.
Installa i pacchetti tensorflow-io ed elasticsearch richiesti
pip install tensorflow-io
pip install elasticsearch
Importa pacchetti
import os
import time
from sklearn.model_selection import train_test_split
from elasticsearch import Elasticsearch
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing
import tensorflow_io as tfio
Convalida le importazioni tf e tfio
print("tensorflow-io version: {}".format(tfio.__version__))
print("tensorflow version: {}".format(tf.__version__))
tensorflow-io version: 0.16.0 tensorflow version: 2.3.0
Scarica e configura l'istanza Elasticsearch
A scopo dimostrativo, viene utilizzata la versione open source del pacchetto elasticsearch.
wget -q https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-oss-7.9.2-linux-x86_64.tar.gz
wget -q https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-oss-7.9.2-linux-x86_64.tar.gz.sha512
tar -xzf elasticsearch-oss-7.9.2-linux-x86_64.tar.gz
sudo chown -R daemon:daemon elasticsearch-7.9.2/
shasum -a 512 -c elasticsearch-oss-7.9.2-linux-x86_64.tar.gz.sha512
elasticsearch-oss-7.9.2-linux-x86_64.tar.gz: OK
Esegui l'istanza come processo daemon
sudo -H -u daemon elasticsearch-7.9.2/bin/elasticsearch
Starting job # 0 in a separate thread.
# Sleep for few seconds to let the instance start.
time.sleep(20)
Una volta che l'istanza è stata avviata, grep per elasticsearch
nei processi lista per confermare la disponibilità.
ps -ef | grep elasticsearch
root 144 142 0 21:24 ? 00:00:00 sudo -H -u daemon elasticsearch-7.9.2/bin/elasticsearch daemon 145 144 86 21:24 ? 00:00:17 /content/elasticsearch-7.9.2/jdk/bin/java -Xshare:auto -Des.networkaddress.cache.ttl=60 -Des.networkaddress.cache.negative.ttl=10 -XX:+AlwaysPreTouch -Xss1m -Djava.awt.headless=true -Dfile.encoding=UTF-8 -Djna.nosys=true -XX:-OmitStackTraceInFastThrow -XX:+ShowCodeDetailsInExceptionMessages -Dio.netty.noUnsafe=true -Dio.netty.noKeySetOptimization=true -Dio.netty.recycler.maxCapacityPerThread=0 -Dio.netty.allocator.numDirectArenas=0 -Dlog4j.shutdownHookEnabled=false -Dlog4j2.disable.jmx=true -Djava.locale.providers=SPI,COMPAT -Xms1g -Xmx1g -XX:+UseG1GC -XX:G1ReservePercent=25 -XX:InitiatingHeapOccupancyPercent=30 -Djava.io.tmpdir=/tmp/elasticsearch-16913031424109346409 -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=data -XX:ErrorFile=logs/hs_err_pid%p.log -Xlog:gc*,gc+age=trace,safepoint:file=logs/gc.log:utctime,pid,tags:filecount=32,filesize=64m -XX:MaxDirectMemorySize=536870912 -Des.path.home=/content/elasticsearch-7.9.2 -Des.path.conf=/content/elasticsearch-7.9.2/config -Des.distribution.flavor=oss -Des.distribution.type=tar -Des.bundled_jdk=true -cp /content/elasticsearch-7.9.2/lib/* org.elasticsearch.bootstrap.Elasticsearch root 382 380 0 21:24 ? 00:00:00 grep elasticsearch
interrogare l'endpoint di base per recuperare informazioni sul cluster.
curl -sX GET "localhost:9200/"
{ "name" : "d1bc7d054c69", "cluster_name" : "elasticsearch", "cluster_uuid" : "P8YXfKqYS-OS3k9CdMmlsw", "version" : { "number" : "7.9.2", "build_flavor" : "oss", "build_type" : "tar", "build_hash" : "d34da0ea4a966c4e49417f2da2f244e3e97b4e6e", "build_date" : "2020-09-23T00:45:33.626720Z", "build_snapshot" : false, "lucene_version" : "8.6.2", "minimum_wire_compatibility_version" : "6.8.0", "minimum_index_compatibility_version" : "6.0.0-beta1" }, "tagline" : "You Know, for Search" }
Esplora il set di dati
Ai fini di questo tutorial, consente di scaricare il PetFinder set di dati e dei mangimi i dati in elasticsearch manualmente. L'obiettivo di questo problema di classificazione è prevedere se l'animale verrà adottato o meno.
dataset_url = 'http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip'
csv_file = 'datasets/petfinder-mini/petfinder-mini.csv'
tf.keras.utils.get_file('petfinder_mini.zip', dataset_url,
extract=True, cache_dir='.')
pf_df = pd.read_csv(csv_file)
Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip 1671168/1668792 [==============================] - 0s 0us/step
pf_df.head()
Ai fini del tutorial, vengono apportate modifiche alla colonna dell'etichetta. 0 indicherà che l'animale non è stato adottato e 1 indicherà che lo era.
# In the original dataset "4" indicates the pet was not adopted.
pf_df['target'] = np.where(pf_df['AdoptionSpeed']==4, 0, 1)
# Drop un-used columns.
pf_df = pf_df.drop(columns=['AdoptionSpeed', 'Description'])
# Number of datapoints and columns
len(pf_df), len(pf_df.columns)
(11537, 14)
Dividi il set di dati
train_df, test_df = train_test_split(pf_df, test_size=0.3, shuffle=True)
print("Number of training samples: ",len(train_df))
print("Number of testing sample: ",len(test_df))
Number of training samples: 8075 Number of testing sample: 3462
Memorizza i dati del treno e dei test negli indici elasticsearch
L'archiviazione dei dati nel cluster elasticsearch locale simula un ambiente per il continuo recupero remoto dei dati a scopo di addestramento e inferenza.
ES_NODES = "http://localhost:9200"
def prepare_es_data(index, doc_type, df):
records = df.to_dict(orient="records")
es_data = []
for idx, record in enumerate(records):
meta_dict = {
"index": {
"_index": index,
"_type": doc_type,
"_id": idx
}
}
es_data.append(meta_dict)
es_data.append(record)
return es_data
def index_es_data(index, es_data):
es_client = Elasticsearch(hosts = [ES_NODES])
if es_client.indices.exists(index):
print("deleting the '{}' index.".format(index))
res = es_client.indices.delete(index=index)
print("Response from server: {}".format(res))
print("creating the '{}' index.".format(index))
res = es_client.indices.create(index=index)
print("Response from server: {}".format(res))
print("bulk index the data")
res = es_client.bulk(index=index, body=es_data, refresh = True)
print("Errors: {}, Num of records indexed: {}".format(res["errors"], len(res["items"])))
train_es_data = prepare_es_data(index="train", doc_type="pet", df=train_df)
test_es_data = prepare_es_data(index="test", doc_type="pet", df=test_df)
index_es_data(index="train", es_data=train_es_data)
time.sleep(3)
index_es_data(index="test", es_data=test_es_data)
creating the 'train' index. Response from server: {'acknowledged': True, 'shards_acknowledged': True, 'index': 'train'} bulk index the data /usr/local/lib/python3.6/dist-packages/elasticsearch/connection/base.py:190: ElasticsearchDeprecationWarning: [types removal] Specifying types in bulk requests is deprecated. warnings.warn(message, category=ElasticsearchDeprecationWarning) Errors: False, Num of records indexed: 8075 creating the 'test' index. Response from server: {'acknowledged': True, 'shards_acknowledged': True, 'index': 'test'} bulk index the data Errors: False, Num of records indexed: 3462
Prepara i set di dati tfio
Una volta che i dati sono disponibili nel cluster, solo tensorflow-io
è necessaria per trasmettere i dati dagli indici. elasticsearch.ElasticsearchIODataset
classe è utilizzata per questo scopo. I eredita classe dalla tf.data.Dataset
e quindi espone tutte le funzionalità utili di tf.data.Dataset
fuori dalla scatola.
Set di dati di formazione
BATCH_SIZE=32
HEADERS = {"Content-Type": "application/json"}
train_ds = tfio.experimental.elasticsearch.ElasticsearchIODataset(
nodes=[ES_NODES],
index="train",
doc_type="pet",
headers=HEADERS
)
# Prepare a tuple of (features, label)
train_ds = train_ds.map(lambda v: (v, v.pop("target")))
train_ds = train_ds.batch(BATCH_SIZE)
Connection successful: http://localhost:9200/_cluster/health
Test del set di dati
test_ds = tfio.experimental.elasticsearch.ElasticsearchIODataset(
nodes=[ES_NODES],
index="test",
doc_type="pet",
headers=HEADERS
)
# Prepare a tuple of (features, label)
test_ds = test_ds.map(lambda v: (v, v.pop("target")))
test_ds = test_ds.batch(BATCH_SIZE)
Connection successful: http://localhost:9200/_cluster/health
Definisci i livelli di preelaborazione keras
Come per l' esercitazione dati strutturati , si raccomanda di utilizzare i livelli Keras preelaborazione quanto sono più intuitivo, e può essere facilmente integrato con i modelli. Tuttavia, lo standard feature_columns può anche essere usato.
Per una migliore comprensione delle preprocessing_layers
nella classificazione di dati strutturati, si prega di consultare il tutorial di dati strutturati
def get_normalization_layer(name, dataset):
# Create a Normalization layer for our feature.
normalizer = preprocessing.Normalization()
# Prepare a Dataset that only yields our feature.
feature_ds = dataset.map(lambda x, y: x[name])
# Learn the statistics of the data.
normalizer.adapt(feature_ds)
return normalizer
def get_category_encoding_layer(name, dataset, dtype, max_tokens=None):
# Create a StringLookup layer which will turn strings into integer indices
if dtype == 'string':
index = preprocessing.StringLookup(max_tokens=max_tokens)
else:
index = preprocessing.IntegerLookup(max_values=max_tokens)
# Prepare a Dataset that only yields our feature
feature_ds = dataset.map(lambda x, y: x[name])
# Learn the set of possible values and assign them a fixed integer index.
index.adapt(feature_ds)
# Create a Discretization for our integer indices.
encoder = preprocessing.CategoryEncoding(max_tokens=index.vocab_size())
# Prepare a Dataset that only yields our feature.
feature_ds = feature_ds.map(index)
# Learn the space of possible indices.
encoder.adapt(feature_ds)
# Apply one-hot encoding to our indices. The lambda function captures the
# layer so you can use them, or include them in the functional model later.
return lambda feature: encoder(index(feature))
Recupera un batch e osserva le caratteristiche di un record di esempio. Ciò contribuirà a definire le keras pre-elaborazione strati per la formazione del tf.keras
modello.
ds_iter = iter(train_ds)
features, label = next(ds_iter)
{key: value.numpy()[0] for key,value in features.items()}
{'Age': 2, 'Breed1': b'Tabby', 'Color1': b'Black', 'Color2': b'Cream', 'Fee': 0, 'FurLength': b'Short', 'Gender': b'Male', 'Health': b'Healthy', 'MaturitySize': b'Small', 'PhotoAmt': 4, 'Sterilized': b'No', 'Type': b'Cat', 'Vaccinated': b'No'}
Scegli un sottoinsieme di funzionalità.
all_inputs = []
encoded_features = []
# Numeric features.
for header in ['PhotoAmt', 'Fee']:
numeric_col = tf.keras.Input(shape=(1,), name=header)
normalization_layer = get_normalization_layer(header, train_ds)
encoded_numeric_col = normalization_layer(numeric_col)
all_inputs.append(numeric_col)
encoded_features.append(encoded_numeric_col)
# Categorical features encoded as string.
categorical_cols = ['Type', 'Color1', 'Color2', 'Gender', 'MaturitySize',
'FurLength', 'Vaccinated', 'Sterilized', 'Health', 'Breed1']
for header in categorical_cols:
categorical_col = tf.keras.Input(shape=(1,), name=header, dtype='string')
encoding_layer = get_category_encoding_layer(header, train_ds, dtype='string',
max_tokens=5)
encoded_categorical_col = encoding_layer(categorical_col)
all_inputs.append(categorical_col)
encoded_features.append(encoded_categorical_col)
Costruisci, compila e addestra il modello
# Set the parameters
OPTIMIZER="adam"
LOSS=tf.keras.losses.BinaryCrossentropy(from_logits=True)
METRICS=['accuracy']
EPOCHS=10
# Convert the feature columns into a tf.keras layer
all_features = tf.keras.layers.concatenate(encoded_features)
# design/build the model
x = tf.keras.layers.Dense(32, activation="relu")(all_features)
x = tf.keras.layers.Dropout(0.5)(x)
x = tf.keras.layers.Dense(64, activation="relu")(x)
x = tf.keras.layers.Dropout(0.5)(x)
output = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(all_inputs, output)
tf.keras.utils.plot_model(model, rankdir='LR', show_shapes=True)
# compile the model
model.compile(optimizer=OPTIMIZER, loss=LOSS, metrics=METRICS)
# fit the model
model.fit(train_ds, epochs=EPOCHS)
Epoch 1/10 /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:543: UserWarning: Input dict contained keys ['Age'] which did not match any model input. They will be ignored by the model. [n for n in tensors.keys() if n not in ref_input_names]) 253/253 [==============================] - 4s 14ms/step - loss: 0.6169 - accuracy: 0.6042 Epoch 2/10 253/253 [==============================] - 4s 14ms/step - loss: 0.5634 - accuracy: 0.6937 Epoch 3/10 253/253 [==============================] - 4s 15ms/step - loss: 0.5573 - accuracy: 0.6981 Epoch 4/10 253/253 [==============================] - 4s 15ms/step - loss: 0.5528 - accuracy: 0.7087 Epoch 5/10 253/253 [==============================] - 4s 14ms/step - loss: 0.5512 - accuracy: 0.7173 Epoch 6/10 253/253 [==============================] - 4s 15ms/step - loss: 0.5456 - accuracy: 0.7219 Epoch 7/10 253/253 [==============================] - 4s 15ms/step - loss: 0.5397 - accuracy: 0.7283 Epoch 8/10 253/253 [==============================] - 4s 14ms/step - loss: 0.5385 - accuracy: 0.7331 Epoch 9/10 253/253 [==============================] - 4s 15ms/step - loss: 0.5355 - accuracy: 0.7326 Epoch 10/10 253/253 [==============================] - 4s 15ms/step - loss: 0.5412 - accuracy: 0.7321 <tensorflow.python.keras.callbacks.History at 0x7f5c235112e8>
Dedurre i dati del test
res = model.evaluate(test_ds)
print("test loss, test acc:", res)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:543: UserWarning: Input dict contained keys ['Age'] which did not match any model input. They will be ignored by the model. [n for n in tensors.keys() if n not in ref_input_names]) 109/109 [==============================] - 2s 15ms/step - loss: 0.5344 - accuracy: 0.7421 test loss, test acc: [0.534355640411377, 0.7420566082000732]