Vincoli di forma per l'etica con Tensorflow Lattice

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza la fonte su GitHub Scarica taccuino

Panoramica

Questa esercitazione dimostra come la libreria tensorflow Lattice (TFL) può essere utilizzata per modelli di treni che si comportano in modo responsabile, e non violano alcune ipotesi che sono etici o fiera. In particolare, ci concentreremo sull'uso di vincoli di monotonia per evitare la penalizzazione ingiusto di determinate qualità. Questo tutorial include dimostrazioni di esperimenti dalla carta Deontologico Etico da monotonia vincoli di forma di Serena Wang e Maya Gupta, pubblicati a AISTATS 2020 .

Utilizzeremo stimatori fissi TFL su set di dati pubblici, ma tieni presente che tutto in questo tutorial può essere eseguito anche con modelli costruiti da livelli TFL Keras.

Prima di procedere, assicurati che nel tuo runtime siano installati tutti i pacchetti richiesti (come importati nelle celle di codice sottostanti).

Impostare

Installazione del pacchetto TF Lattice:

pip install tensorflow-lattice seaborn

Importazione dei pacchetti richiesti:

import tensorflow as tf

import logging
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
import sys
import tensorflow_lattice as tfl
logging.disable(sys.maxsize)

Valori predefiniti utilizzati in questo tutorial:

# List of learning rate hyperparameters to try.
# For a longer list of reasonable hyperparameters, try [0.001, 0.01, 0.1].
LEARNING_RATES = [0.01]
# Default number of training epochs and batch sizes.
NUM_EPOCHS = 1000
BATCH_SIZE = 1000
# Directory containing dataset files.
DATA_DIR = 'https://raw.githubusercontent.com/serenalwang/shape_constraints_for_ethics/master'

Caso di studio n. 1: Ammissioni alla facoltà di giurisprudenza

Nella prima parte di questo tutorial, prenderemo in considerazione un caso di studio utilizzando il set di dati sulle ammissioni alla scuola di legge del Consiglio di ammissione alla scuola di legge (LSAC). Addestreremo un classificatore per prevedere se uno studente supererà o meno la barra utilizzando due caratteristiche: il punteggio LSAT dello studente e il GPA universitario.

Supponiamo che il punteggio del classificatore sia stato utilizzato per guidare l'ammissione alla scuola di legge o le borse di studio. Secondo le norme sociali basate sul merito, ci aspetteremmo che gli studenti con un punteggio GPA e LSAT più alto ricevano un punteggio più alto dal classificatore. Tuttavia, osserveremo che è facile per i modelli violare queste norme intuitive e talvolta penalizzare le persone per avere un punteggio GPA o LSAT più alto.

Per affrontare questo problema penalizzazione ingiusta, possiamo imporre vincoli di monotonia in modo che un modello non penalizza più alto GPA o superiore punteggio ULTIMO, parità di altre condizioni. In questo tutorial, mostreremo come imporre quei vincoli di monotonicità usando TFL.

Carica i dati della facoltà di giurisprudenza

# Load data file.
law_file_name = 'lsac.csv'
law_file_path = os.path.join(DATA_DIR, law_file_name)
raw_law_df = pd.read_csv(law_file_path, delimiter=',')

Set di dati pre-elaborazione:

# Define label column name.
LAW_LABEL = 'pass_bar'
def preprocess_law_data(input_df):
  # Drop rows with where the label or features of interest are missing.
  output_df = input_df[~input_df[LAW_LABEL].isna() & ~input_df['ugpa'].isna() &
                       (input_df['ugpa'] > 0) & ~input_df['lsat'].isna()]
  return output_df


law_df = preprocess_law_data(raw_law_df)

Dividi i dati in set di addestramento/convalida/test

def split_dataset(input_df, random_state=888):
  """Splits an input dataset into train, val, and test sets."""
  train_df, test_val_df = train_test_split(
      input_df, test_size=0.3, random_state=random_state)
  val_df, test_df = train_test_split(
      test_val_df, test_size=0.66, random_state=random_state)
  return train_df, val_df, test_df


law_train_df, law_val_df, law_test_df = split_dataset(law_df)

Visualizza la distribuzione dei dati

Per prima cosa visualizzeremo la distribuzione dei dati. Tracceremo i punteggi GPA e LSAT per tutti gli studenti che hanno superato l'esame e anche per tutti gli studenti che non hanno superato l'esame.

def plot_dataset_contour(input_df, title):
  plt.rcParams['font.family'] = ['serif']
  g = sns.jointplot(
      x='ugpa',
      y='lsat',
      data=input_df,
      kind='kde',
      xlim=[1.4, 4],
      ylim=[0, 50])
  g.plot_joint(plt.scatter, c='b', s=10, linewidth=1, marker='+')
  g.ax_joint.collections[0].set_alpha(0)
  g.set_axis_labels('Undergraduate GPA', 'LSAT score', fontsize=14)
  g.fig.suptitle(title, fontsize=14)
  # Adust plot so that the title fits.
  plt.subplots_adjust(top=0.9)
  plt.show()
law_df_pos = law_df[law_df[LAW_LABEL] == 1]
plot_dataset_contour(
    law_df_pos, title='Distribution of students that passed the bar')

png

law_df_neg = law_df[law_df[LAW_LABEL] == 0]
plot_dataset_contour(
    law_df_neg, title='Distribution of students that failed the bar')

png

Addestrare un modello lineare calibrato per prevedere il passaggio dell'esame della barra

Successivamente, abbiamo formerà un modello lineare calibrato da TFL a prevedere o meno uno studente passerà al bar. Le due caratteristiche di input saranno il punteggio LSAT e il GPA universitario e l'etichetta di formazione sarà se lo studente ha superato la barra.

Per prima cosa addestreremo un modello lineare calibrato senza alcun vincolo. Quindi, addestreremo un modello lineare calibrato con vincoli di monotonicità e osserveremo la differenza nell'output e nell'accuratezza del modello.

Funzioni di supporto per l'addestramento di uno stimatore lineare calibrato TFL

Queste funzioni verranno utilizzate per questo caso di studio della facoltà di giurisprudenza, nonché per il caso di studio di default del credito riportato di seguito.

def train_tfl_estimator(train_df, monotonicity, learning_rate, num_epochs,
                        batch_size, get_input_fn,
                        get_feature_columns_and_configs):
  """Trains a TFL calibrated linear estimator.

  Args:
    train_df: pandas dataframe containing training data.
    monotonicity: if 0, then no monotonicity constraints. If 1, then all
      features are constrained to be monotonically increasing.
    learning_rate: learning rate of Adam optimizer for gradient descent.
    num_epochs: number of training epochs.
    batch_size: batch size for each epoch. None means the batch size is the full
      dataset size.
    get_input_fn: function that returns the input_fn for a TF estimator.
    get_feature_columns_and_configs: function that returns TFL feature columns
      and configs.

  Returns:
    estimator: a trained TFL calibrated linear estimator.

  """
  feature_columns, feature_configs = get_feature_columns_and_configs(
      monotonicity)

  model_config = tfl.configs.CalibratedLinearConfig(
      feature_configs=feature_configs, use_bias=False)

  estimator = tfl.estimators.CannedClassifier(
      feature_columns=feature_columns,
      model_config=model_config,
      feature_analysis_input_fn=get_input_fn(input_df=train_df, num_epochs=1),
      optimizer=tf.keras.optimizers.Adam(learning_rate))

  estimator.train(
      input_fn=get_input_fn(
          input_df=train_df, num_epochs=num_epochs, batch_size=batch_size))
  return estimator


def optimize_learning_rates(
    train_df,
    val_df,
    test_df,
    monotonicity,
    learning_rates,
    num_epochs,
    batch_size,
    get_input_fn,
    get_feature_columns_and_configs,
):
  """Optimizes learning rates for TFL estimators.

  Args:
    train_df: pandas dataframe containing training data.
    val_df: pandas dataframe containing validation data.
    test_df: pandas dataframe containing test data.
    monotonicity: if 0, then no monotonicity constraints. If 1, then all
      features are constrained to be monotonically increasing.
    learning_rates: list of learning rates to try.
    num_epochs: number of training epochs.
    batch_size: batch size for each epoch. None means the batch size is the full
      dataset size.
    get_input_fn: function that returns the input_fn for a TF estimator.
    get_feature_columns_and_configs: function that returns TFL feature columns
      and configs.

  Returns:
    A single TFL estimator that achieved the best validation accuracy.
  """
  estimators = []
  train_accuracies = []
  val_accuracies = []
  test_accuracies = []
  for lr in learning_rates:
    estimator = train_tfl_estimator(
        train_df=train_df,
        monotonicity=monotonicity,
        learning_rate=lr,
        num_epochs=num_epochs,
        batch_size=batch_size,
        get_input_fn=get_input_fn,
        get_feature_columns_and_configs=get_feature_columns_and_configs)
    estimators.append(estimator)
    train_acc = estimator.evaluate(
        input_fn=get_input_fn(train_df, num_epochs=1))['accuracy']
    val_acc = estimator.evaluate(
        input_fn=get_input_fn(val_df, num_epochs=1))['accuracy']
    test_acc = estimator.evaluate(
        input_fn=get_input_fn(test_df, num_epochs=1))['accuracy']
    print('accuracies for learning rate %f: train: %f, val: %f, test: %f' %
          (lr, train_acc, val_acc, test_acc))
    train_accuracies.append(train_acc)
    val_accuracies.append(val_acc)
    test_accuracies.append(test_acc)
  max_index = val_accuracies.index(max(val_accuracies))
  return estimators[max_index]

Funzioni di supporto per la configurazione delle funzionalità del set di dati della scuola di legge

Queste funzioni di supporto sono specifiche per il caso di studio della scuola di legge.

def get_input_fn_law(input_df, num_epochs, batch_size=None):
  """Gets TF input_fn for law school models."""
  return tf.compat.v1.estimator.inputs.pandas_input_fn(
      x=input_df[['ugpa', 'lsat']],
      y=input_df['pass_bar'],
      num_epochs=num_epochs,
      batch_size=batch_size or len(input_df),
      shuffle=False)


def get_feature_columns_and_configs_law(monotonicity):
  """Gets TFL feature configs for law school models."""
  feature_columns = [
      tf.feature_column.numeric_column('ugpa'),
      tf.feature_column.numeric_column('lsat'),
  ]
  feature_configs = [
      tfl.configs.FeatureConfig(
          name='ugpa',
          lattice_size=2,
          pwl_calibration_num_keypoints=20,
          monotonicity=monotonicity,
          pwl_calibration_always_monotonic=False),
      tfl.configs.FeatureConfig(
          name='lsat',
          lattice_size=2,
          pwl_calibration_num_keypoints=20,
          monotonicity=monotonicity,
          pwl_calibration_always_monotonic=False),
  ]
  return feature_columns, feature_configs

Funzioni di supporto per la visualizzazione degli output del modello addestrato

def get_predicted_probabilities(estimator, input_df, get_input_fn):
  predictions = estimator.predict(
      input_fn=get_input_fn(input_df=input_df, num_epochs=1))
  return [prediction['probabilities'][1] for prediction in predictions]


def plot_model_contour(estimator, input_df, num_keypoints=20):
  x = np.linspace(min(input_df['ugpa']), max(input_df['ugpa']), num_keypoints)
  y = np.linspace(min(input_df['lsat']), max(input_df['lsat']), num_keypoints)

  x_grid, y_grid = np.meshgrid(x, y)

  positions = np.vstack([x_grid.ravel(), y_grid.ravel()])
  plot_df = pd.DataFrame(positions.T, columns=['ugpa', 'lsat'])
  plot_df[LAW_LABEL] = np.ones(len(plot_df))
  predictions = get_predicted_probabilities(
      estimator=estimator, input_df=plot_df, get_input_fn=get_input_fn_law)
  grid_predictions = np.reshape(predictions, x_grid.shape)

  plt.rcParams['font.family'] = ['serif']
  plt.contour(
      x_grid,
      y_grid,
      grid_predictions,
      colors=('k',),
      levels=np.linspace(0, 1, 11))
  plt.contourf(
      x_grid,
      y_grid,
      grid_predictions,
      cmap=plt.cm.bone,
      levels=np.linspace(0, 1, 11))  # levels=np.linspace(0,1,8));
  plt.xticks(fontsize=20)
  plt.yticks(fontsize=20)

  cbar = plt.colorbar()
  cbar.ax.set_ylabel('Model score', fontsize=20)
  cbar.ax.tick_params(labelsize=20)

  plt.xlabel('Undergraduate GPA', fontsize=20)
  plt.ylabel('LSAT score', fontsize=20)

Addestra modello lineare calibrato non vincolato (non monotono)

nomon_linear_estimator = optimize_learning_rates(
    train_df=law_train_df,
    val_df=law_val_df,
    test_df=law_test_df,
    monotonicity=0,
    learning_rates=LEARNING_RATES,
    batch_size=BATCH_SIZE,
    num_epochs=NUM_EPOCHS,
    get_input_fn=get_input_fn_law,
    get_feature_columns_and_configs=get_feature_columns_and_configs_law)
2021-09-30 20:56:50.475180: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
accuracies for learning rate 0.010000: train: 0.949061, val: 0.945876, test: 0.951781
plot_model_contour(nomon_linear_estimator, input_df=law_df)

png

Treno modello lineare calibrato monotono

mon_linear_estimator = optimize_learning_rates(
    train_df=law_train_df,
    val_df=law_val_df,
    test_df=law_test_df,
    monotonicity=1,
    learning_rates=LEARNING_RATES,
    batch_size=BATCH_SIZE,
    num_epochs=NUM_EPOCHS,
    get_input_fn=get_input_fn_law,
    get_feature_columns_and_configs=get_feature_columns_and_configs_law)
accuracies for learning rate 0.010000: train: 0.949249, val: 0.945447, test: 0.951781
plot_model_contour(mon_linear_estimator, input_df=law_df)

png

Addestra altri modelli non vincolati

Abbiamo dimostrato che i modelli lineari calibrati TFL potrebbero essere addestrati per essere monotonici sia nel punteggio LSAT che nel GPA senza un sacrificio troppo grande in termini di accuratezza.

Ma come si confronta il modello lineare calibrato con altri tipi di modelli, come le reti neurali profonde (DNN) o gli alberi con aumento del gradiente (GBT)? DNN e GBT sembrano avere risultati ragionevolmente equi? Per rispondere a questa domanda, in seguito addestreremo un DNN e un GBT non vincolati. In effetti, osserveremo che DNN e GBT violano facilmente la monotonia nel punteggio LSAT e nel GPA universitario.

Addestrare un modello di rete neurale profonda (DNN) non vincolato

L'architettura è stata precedentemente ottimizzata per ottenere un'elevata precisione di convalida.

feature_names = ['ugpa', 'lsat']

dnn_estimator = tf.estimator.DNNClassifier(
    feature_columns=[
        tf.feature_column.numeric_column(feature) for feature in feature_names
    ],
    hidden_units=[100, 100],
    optimizer=tf.keras.optimizers.Adam(learning_rate=0.008),
    activation_fn=tf.nn.relu)

dnn_estimator.train(
    input_fn=get_input_fn_law(
        law_train_df, batch_size=BATCH_SIZE, num_epochs=NUM_EPOCHS))
dnn_train_acc = dnn_estimator.evaluate(
    input_fn=get_input_fn_law(law_train_df, num_epochs=1))['accuracy']
dnn_val_acc = dnn_estimator.evaluate(
    input_fn=get_input_fn_law(law_val_df, num_epochs=1))['accuracy']
dnn_test_acc = dnn_estimator.evaluate(
    input_fn=get_input_fn_law(law_test_df, num_epochs=1))['accuracy']
print('accuracies for DNN: train: %f, val: %f, test: %f' %
      (dnn_train_acc, dnn_val_acc, dnn_test_acc))
accuracies for DNN: train: 0.948874, val: 0.946735, test: 0.951559
plot_model_contour(dnn_estimator, input_df=law_df)

png

Addestra un modello Gradient Boosted Trees (GBT) non vincolato

La struttura ad albero è stata precedentemente ottimizzata per ottenere un'elevata precisione di convalida.

tree_estimator = tf.estimator.BoostedTreesClassifier(
    feature_columns=[
        tf.feature_column.numeric_column(feature) for feature in feature_names
    ],
    n_batches_per_layer=2,
    n_trees=20,
    max_depth=4)

tree_estimator.train(
    input_fn=get_input_fn_law(
        law_train_df, num_epochs=NUM_EPOCHS, batch_size=BATCH_SIZE))
tree_train_acc = tree_estimator.evaluate(
    input_fn=get_input_fn_law(law_train_df, num_epochs=1))['accuracy']
tree_val_acc = tree_estimator.evaluate(
    input_fn=get_input_fn_law(law_val_df, num_epochs=1))['accuracy']
tree_test_acc = tree_estimator.evaluate(
    input_fn=get_input_fn_law(law_test_df, num_epochs=1))['accuracy']
print('accuracies for GBT: train: %f, val: %f, test: %f' %
      (tree_train_acc, tree_val_acc, tree_test_acc))
accuracies for GBT: train: 0.949249, val: 0.945017, test: 0.950896
plot_model_contour(tree_estimator, input_df=law_df)

png

Caso di studio n. 2: insolvenza del credito

Il secondo caso di studio che prenderemo in considerazione in questo tutorial è la previsione della probabilità di insolvenza del credito di un individuo. Utilizzeremo il set di dati Default of Credit Card Clients dal repository UCI. Questi dati sono stati raccolti da 30.000 utenti di carte di credito taiwanesi e contengono un'etichetta binaria che indica se un utente è inadempiente o meno su un pagamento in una finestra temporale. Le caratteristiche includono stato civile, sesso, istruzione e quanto tempo un utente è in ritardo con il pagamento delle bollette esistenti, per ciascuno dei mesi di aprile-settembre 2005.

Come abbiamo fatto con il primo caso di studio, abbiamo di nuovo illustriamo utilizzando i vincoli di monotonia per evitare la penalizzazione ingiusto: se il modello dovesse essere utilizzato per determinare il punteggio di credito di un utente, potrebbe sentire ingiusto molti se fossero penalizzati per pagare i loro conti prima, tutto il resto uguale. Pertanto, applichiamo un vincolo di monotonicità che impedisce al modello di penalizzare i pagamenti anticipati.

Carica dati di default del credito

# Load data file.
credit_file_name = 'credit_default.csv'
credit_file_path = os.path.join(DATA_DIR, credit_file_name)
credit_df = pd.read_csv(credit_file_path, delimiter=',')
# Define label column name.
CREDIT_LABEL = 'default'

Dividi i dati in set di addestramento/convalida/test

credit_train_df, credit_val_df, credit_test_df = split_dataset(credit_df)

Visualizza la distribuzione dei dati

Per prima cosa visualizzeremo la distribuzione dei dati. Tracciamo l'errore medio e standard del tasso di insolvenza osservato per le persone con diversi stati coniugali e stati di rimborso. Lo stato di rimborso rappresenta il numero di mesi di ritardo di una persona nel rimborsare il prestito (ad aprile 2005).

def get_agg_data(df, x_col, y_col, bins=11):
  xbins = pd.cut(df[x_col], bins=bins)
  data = df[[x_col, y_col]].groupby(xbins).agg(['mean', 'sem'])
  return data


def plot_2d_means_credit(input_df, x_col, y_col, x_label, y_label):
  plt.rcParams['font.family'] = ['serif']
  _, ax = plt.subplots(nrows=1, ncols=1)
  plt.setp(ax.spines.values(), color='black', linewidth=1)
  ax.tick_params(
      direction='in', length=6, width=1, top=False, right=False, labelsize=18)
  df_single = get_agg_data(input_df[input_df['MARRIAGE'] == 1], x_col, y_col)
  df_married = get_agg_data(input_df[input_df['MARRIAGE'] == 2], x_col, y_col)
  ax.errorbar(
      df_single[(x_col, 'mean')],
      df_single[(y_col, 'mean')],
      xerr=df_single[(x_col, 'sem')],
      yerr=df_single[(y_col, 'sem')],
      color='orange',
      marker='s',
      capsize=3,
      capthick=1,
      label='Single',
      markersize=10,
      linestyle='')
  ax.errorbar(
      df_married[(x_col, 'mean')],
      df_married[(y_col, 'mean')],
      xerr=df_married[(x_col, 'sem')],
      yerr=df_married[(y_col, 'sem')],
      color='b',
      marker='^',
      capsize=3,
      capthick=1,
      label='Married',
      markersize=10,
      linestyle='')
  leg = ax.legend(loc='upper left', fontsize=18, frameon=True, numpoints=1)
  ax.set_xlabel(x_label, fontsize=18)
  ax.set_ylabel(y_label, fontsize=18)
  ax.set_ylim(0, 1.1)
  ax.set_xlim(-2, 8.5)
  ax.patch.set_facecolor('white')
  leg.get_frame().set_edgecolor('black')
  leg.get_frame().set_facecolor('white')
  leg.get_frame().set_linewidth(1)
  plt.show()
plot_2d_means_credit(credit_train_df, 'PAY_0', 'default',
                     'Repayment Status (April)', 'Observed default rate')

png

Formare un modello lineare calibrato per prevedere il tasso di insolvenza del credito

Successivamente, abbiamo formerà un modello lineare calibrato da TFL per predire se una persona sarà di default su un prestito. Le due caratteristiche di input saranno lo stato civile della persona e quanti mesi la persona è indietro nel rimborsare i prestiti ad aprile (stato di rimborso). L'etichetta di formazione sarà se la persona è inadempiente o meno su un prestito.

Per prima cosa addestreremo un modello lineare calibrato senza alcun vincolo. Quindi, addestreremo un modello lineare calibrato con vincoli di monotonicità e osserveremo la differenza nell'output e nell'accuratezza del modello.

Funzioni di supporto per la configurazione delle funzionalità del set di dati di default del credito

Queste funzioni di supporto sono specifiche per lo studio del caso di default del credito.

def get_input_fn_credit(input_df, num_epochs, batch_size=None):
  """Gets TF input_fn for credit default models."""
  return tf.compat.v1.estimator.inputs.pandas_input_fn(
      x=input_df[['MARRIAGE', 'PAY_0']],
      y=input_df['default'],
      num_epochs=num_epochs,
      batch_size=batch_size or len(input_df),
      shuffle=False)


def get_feature_columns_and_configs_credit(monotonicity):
  """Gets TFL feature configs for credit default models."""
  feature_columns = [
      tf.feature_column.numeric_column('MARRIAGE'),
      tf.feature_column.numeric_column('PAY_0'),
  ]
  feature_configs = [
      tfl.configs.FeatureConfig(
          name='MARRIAGE',
          lattice_size=2,
          pwl_calibration_num_keypoints=3,
          monotonicity=monotonicity,
          pwl_calibration_always_monotonic=False),
      tfl.configs.FeatureConfig(
          name='PAY_0',
          lattice_size=2,
          pwl_calibration_num_keypoints=10,
          monotonicity=monotonicity,
          pwl_calibration_always_monotonic=False),
  ]
  return feature_columns, feature_configs

Funzioni di supporto per la visualizzazione degli output del modello addestrato

def plot_predictions_credit(input_df,
                            estimator,
                            x_col,
                            x_label='Repayment Status (April)',
                            y_label='Predicted default probability'):
  predictions = get_predicted_probabilities(
      estimator=estimator, input_df=input_df, get_input_fn=get_input_fn_credit)
  new_df = input_df.copy()
  new_df.loc[:, 'predictions'] = predictions
  plot_2d_means_credit(new_df, x_col, 'predictions', x_label, y_label)

Addestra modello lineare calibrato non vincolato (non monotono)

nomon_linear_estimator = optimize_learning_rates(
    train_df=credit_train_df,
    val_df=credit_val_df,
    test_df=credit_test_df,
    monotonicity=0,
    learning_rates=LEARNING_RATES,
    batch_size=BATCH_SIZE,
    num_epochs=NUM_EPOCHS,
    get_input_fn=get_input_fn_credit,
    get_feature_columns_and_configs=get_feature_columns_and_configs_credit)
accuracies for learning rate 0.010000: train: 0.818762, val: 0.830065, test: 0.817172
plot_predictions_credit(credit_train_df, nomon_linear_estimator, 'PAY_0')

png

Treno modello lineare calibrato monotono

mon_linear_estimator = optimize_learning_rates(
    train_df=credit_train_df,
    val_df=credit_val_df,
    test_df=credit_test_df,
    monotonicity=1,
    learning_rates=LEARNING_RATES,
    batch_size=BATCH_SIZE,
    num_epochs=NUM_EPOCHS,
    get_input_fn=get_input_fn_credit,
    get_feature_columns_and_configs=get_feature_columns_and_configs_credit)
accuracies for learning rate 0.010000: train: 0.818762, val: 0.830065, test: 0.817172
plot_predictions_credit(credit_train_df, mon_linear_estimator, 'PAY_0')

png