View source on GitHub
  
 | 
Return a tuple of potentially excited cluster states and their labels.
tfq.datasets.excited_cluster_states(
    qubits
)
For every qubit in qubits this method will create a cluster state circuit
on qubits, apply a cirq.X on that qubit along with a label of 1 and add
it to the return dataset. Finally a cluster state circuit on qubits that
doesn't contain any cirq.X gates with a label of -1 will be added to the
returned dataset.
circuits, labels = tfq.datasets.excited_cluster_states(cirq.GridQubit.rect(1, 3))print(circuits[0])(0, 0): ───H───@───────@───X───│ │(0, 1): ───H───@───@───┼───────│ │(0, 2): ───H───────@───@───────labels[0]1print(circuits[-1])(0, 0): ───H───@───────@───│ │(0, 1): ───H───@───@───┼───│ │(0, 2): ───H───────@───@───labels[-1]-1
Circuits that feature a cirq.X gate on one of the qubits are labeled 1,
while the circuit that doesn't feature a cirq.X anywhere has the label -1.
Args | |
|---|---|
qubits
 | 
Python list of cirq.GridQubits on which the excited cluster
state dataset will be created.
 | 
Returns | |
|---|---|
A tuple of cirq.Circuits and Python int labels.
 | 
    View source on GitHub