View source on GitHub |
Return a tuple of potentially excited cluster states and their labels.
tfq.datasets.excited_cluster_states(
qubits
)
For every qubit in qubits
this method will create a cluster state circuit
on qubits
, apply a cirq.X
on that qubit along with a label of 1 and add
it to the return dataset. Finally a cluster state circuit on qubits
that
doesn't contain any cirq.X
gates with a label of -1 will be added to the
returned dataset.
circuits, labels = tfq.datasets.excited_cluster_states(
cirq.GridQubit.rect(1, 3)
)
print(circuits[0])
(0, 0): ───H───@───────@───X───
│ │
(0, 1): ───H───@───@───┼───────
│ │
(0, 2): ───H───────@───@───────
labels[0]
1
print(circuits[-1])
(0, 0): ───H───@───────@───
│ │
(0, 1): ───H───@───@───┼───
│ │
(0, 2): ───H───────@───@───
labels[-1]
-1
Circuits that feature a cirq.X
gate on one of the qubits are labeled 1,
while the circuit that doesn't feature a cirq.X
anywhere has the label -1.
Args | |
---|---|
qubits
|
Python list of cirq.GridQubit s on which the excited cluster
state dataset will be created.
|
Returns | |
---|---|
A tuple of cirq.Circuit s and Python int labels.
|