View source on GitHub |
Differentiate a circuit with respect to its inputs by linearly combining values obtained by evaluating the op using parameter values perturbed about their forward-pass values.
Inherits From: Differentiator
tfq.differentiators.LinearCombination(
weights, perturbations
)
my_op = tfq.get_expectation_op()
weights = [5, 6, 7]
perturbations = [0, 0.5, 0.25]
linear_differentiator = tfq.differentiators.LinearCombination(
weights, perturbations
)
# Get an expectation op, with this differentiator attached.
op = linear_differentiator.generate_differentiable_op(
analytic_op=my_op
)
qubit = cirq.GridQubit(0, 0)
circuit = tfq.convert_to_tensor([
cirq.Circuit(cirq.X(qubit) ** sympy.Symbol('alpha'))
])
psums = tfq.convert_to_tensor([[cirq.Z(qubit)]])
symbol_values = np.array([[0.123]], dtype=np.float32)
# Calculate tfq gradient.
symbol_values_t = tf.convert_to_tensor(symbol_values)
symbol_names = tf.convert_to_tensor(['alpha'])
with tf.GradientTape() as g:
g.watch(symbol_values_t)
expectations = op(circuit, symbol_names, symbol_values_t, psums
)
# Gradient would be: 5 * f(x+0) + 6 * f(x+0.5) + 7 * f(x+0.25)
grads = g.gradient(expectations, symbol_values_t)
# Note: this gradient visn't correct in value, but showcases
# the principle of how gradients can be defined in a very flexible
# fashion.
grads
tf.Tensor([[5.089467]], shape=(1, 1), dtype=float32)
Methods
differentiate_analytic
@tf.function
differentiate_analytic( programs, symbol_names, symbol_values, pauli_sums, forward_pass_vals, grad )
Differentiate a circuit with analytical expectation.
This is called at graph runtime by TensorFlow. differentiate_analytic
calls he inheriting differentiator's get_gradient_circuits
and uses
those components to construct the gradient.
Args | |
---|---|
programs
|
tf.Tensor of strings with shape [batch_size] containing
the string representations of the circuits to be executed.
|
symbol_names
|
tf.Tensor of strings with shape [n_params], which
is used to specify the order in which the values in
symbol_values should be placed inside of the circuits in
programs .
|
symbol_values
|
tf.Tensor of real numbers with shape
[batch_size, n_params] specifying parameter values to resolve
into the circuits specified by programs, following the ordering
dictated by symbol_names .
|
pauli_sums
|
tf.Tensor of strings with shape [batch_size, n_ops]
containing the string representation of the operators that will
be used on all of the circuits in the expectation calculations.
|
forward_pass_vals
|
tf.Tensor of real numbers with shape
[batch_size, n_ops] containing the output of the forward pass
through the op you are differentiating.
|
grad
|
tf.Tensor of real numbers with shape [batch_size, n_ops]
representing the gradient backpropagated to the output of the
op you are differentiating through.
|
Returns | |
---|---|
A tf.Tensor with the same shape as symbol_values representing
the gradient backpropageted to the symbol_values input of the op
you are differentiating through.
|
differentiate_sampled
@tf.function
differentiate_sampled( programs, symbol_names, symbol_values, pauli_sums, num_samples, forward_pass_vals, grad )
Differentiate a circuit with sampled expectation.
This is called at graph runtime by TensorFlow. differentiate_sampled
calls he inheriting differentiator's get_gradient_circuits
and uses
those components to construct the gradient.
Args | |
---|---|
programs
|
tf.Tensor of strings with shape [batch_size] containing
the string representations of the circuits to be executed.
|
symbol_names
|
tf.Tensor of strings with shape [n_params], which
is used to specify the order in which the values in
symbol_values should be placed inside of the circuits in
programs .
|
symbol_values
|
tf.Tensor of real numbers with shape
[batch_size, n_params] specifying parameter values to resolve
into the circuits specified by programs, following the ordering
dictated by symbol_names .
|
pauli_sums
|
tf.Tensor of strings with shape [batch_size, n_ops]
containing the string representation of the operators that will
be used on all of the circuits in the expectation calculations.
|
num_samples
|
tf.Tensor of positive integers representing the
number of samples per term in each term of pauli_sums used
during the forward pass.
|
forward_pass_vals
|
tf.Tensor of real numbers with shape
[batch_size, n_ops] containing the output of the forward pass
through the op you are differentiating.
|
grad
|
tf.Tensor of real numbers with shape [batch_size, n_ops]
representing the gradient backpropagated to the output of the
op you are differentiating through.
|
Returns | |
---|---|
A tf.Tensor with the same shape as symbol_values representing
the gradient backpropageted to the symbol_values input of the op
you are differentiating through.
|
generate_differentiable_op
generate_differentiable_op(
*, sampled_op=None, analytic_op=None
)
Generate a differentiable op by attaching self to an op.
This function returns a tf.function
that passes values through to
forward_op
during the forward pass and this differentiator (self
) to
backpropagate through the op during the backward pass. If sampled_op
is provided the differentiators differentiate_sampled
method will
be invoked (which requires sampled_op to be a sample based expectation
op with num_samples input tensor). If analytic_op is provided the
differentiators differentiate_analytic
method will be invoked (which
requires analytic_op to be an analytic based expectation op that does
NOT have num_samples as an input). If both sampled_op and analytic_op
are provided an exception will be raised.
This generate_differentiable_op()
can be called only ONCE because
of the one differentiator per op
policy. You need to call refresh()
to reuse this differentiator with another op.
Args | |
---|---|
sampled_op
|
A callable op that you want to make differentiable
using this differentiator's differentiate_sampled method.
|
analytic_op
|
A callable op that you want to make differentiable
using this differentiators differentiate_analytic method.
|
Returns | |
---|---|
A callable op that who's gradients are now registered to be
a call to this differentiators differentiate_* function.
|
get_gradient_circuits
@tf.function
get_gradient_circuits( programs, symbol_names, symbol_values )
See base class description.
refresh
refresh()
Refresh this differentiator in order to use it with other ops.