TensorFlow.org에서 보기 | Google Colab에서 실행 | GitHub에서 보기 | 노트북 다운로드 |
배경
이 노트북은 Jupyter/Colab 환경에서 MLMD 및 TFX 파이프라인이 있는 Model Card Toolkit을 사용하여 모델 카드를 생성하는 방법을 보여줍니다. 당신은에서 모델 카드에 대해 자세히 알아볼 수 있습니다 https://modelcards.withgoogle.com/about
설정
먼저) 필요한 패키지를 설치 및 가져오고, b) 데이터를 다운로드해야 합니다.
Pip 20.2로 업그레이드하고 TFX 설치
pip install -q --upgrade pip==20.2
pip install -q "tfx==0.26.0"
pip install -q model-card-toolkit
런타임을 다시 시작하셨습니까?
Google Colab을 사용하는 경우 위의 셀을 처음 실행할 때 런타임을 다시 시작해야 합니다(런타임 > 런타임 다시 시작...). Colab이 패키지를 로드하는 방식 때문입니다.
패키지 가져오기
표준 TFX 구성 요소 클래스를 포함하여 필요한 패키지를 가져오고 라이브러리 버전을 확인합니다.
import os
import pprint
import tempfile
import urllib
import absl
import tensorflow as tf
import tensorflow_model_analysis as tfma
tf.get_logger().propagate = False
pp = pprint.PrettyPrinter()
import tfx
from tfx.components import CsvExampleGen
from tfx.components import Evaluator
from tfx.components import Pusher
from tfx.components import ResolverNode
from tfx.components import SchemaGen
from tfx.components import StatisticsGen
from tfx.components import Trainer
from tfx.components import Transform
from tfx.components.base import executor_spec
from tfx.components.trainer.executor import GenericExecutor
from tfx.dsl.experimental import latest_blessed_model_resolver
from tfx.orchestration import metadata
from tfx.orchestration import pipeline
from tfx.orchestration.experimental.interactive.interactive_context import InteractiveContext
from tfx.proto import pusher_pb2
from tfx.proto import trainer_pb2
from tfx.types import Channel
from tfx.types.standard_artifacts import Model
from tfx.types.standard_artifacts import ModelBlessing
from tfx.utils.dsl_utils import external_input
import ml_metadata as mlmd
WARNING:absl:RuntimeParameter is only supported on Cloud-based DAG runner currently.
print('TensorFlow version: {}'.format(tf.__version__))
print('TFX version: {}'.format(tfx.version.__version__))
print('MLMD version: {}'.format(mlmd.__version__))
TensorFlow version: 2.3.2 TFX version: 0.26.0 MLMD version: 0.26.0
파이프라인 경로 설정
# This is the root directory for your TFX pip package installation.
_tfx_root = tfx.__path__
# Set up logging.
absl.logging.set_verbosity(absl.logging.INFO)
예제 데이터 다운로드
TFX 파이프라인에서 사용할 예제 데이터 세트를 다운로드합니다.
DATA_PATH = 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/' \
'adult.data'
_data_root = tempfile.mkdtemp(prefix='tfx-data')
_data_filepath = os.path.join(_data_root, "data.csv")
urllib.request.urlretrieve(DATA_PATH, _data_filepath)
columns = [
"Age", "Workclass", "fnlwgt", "Education", "Education-Num", "Marital-Status",
"Occupation", "Relationship", "Race", "Sex", "Capital-Gain", "Capital-Loss",
"Hours-per-week", "Country", "Over-50K"]
with open(_data_filepath, 'r') as f:
content = f.read()
content = content.replace(", <=50K", ', 0').replace(", >50K", ', 1')
with open(_data_filepath, 'w') as f:
f.write(','.join(columns) + '\n' + content)
CSV 파일을 간단히 살펴보세요.
head {_data_filepath}
Age,Workclass,fnlwgt,Education,Education-Num,Marital-Status,Occupation,Relationship,Race,Sex,Capital-Gain,Capital-Loss,Hours-per-week,Country,Over-50K 39, State-gov, 77516, Bachelors, 13, Never-married, Adm-clerical, Not-in-family, White, Male, 2174, 0, 40, United-States, 0 50, Self-emp-not-inc, 83311, Bachelors, 13, Married-civ-spouse, Exec-managerial, Husband, White, Male, 0, 0, 13, United-States, 0 38, Private, 215646, HS-grad, 9, Divorced, Handlers-cleaners, Not-in-family, White, Male, 0, 0, 40, United-States, 0 53, Private, 234721, 11th, 7, Married-civ-spouse, Handlers-cleaners, Husband, Black, Male, 0, 0, 40, United-States, 0 28, Private, 338409, Bachelors, 13, Married-civ-spouse, Prof-specialty, Wife, Black, Female, 0, 0, 40, Cuba, 0 37, Private, 284582, Masters, 14, Married-civ-spouse, Exec-managerial, Wife, White, Female, 0, 0, 40, United-States, 0 49, Private, 160187, 9th, 5, Married-spouse-absent, Other-service, Not-in-family, Black, Female, 0, 0, 16, Jamaica, 0 52, Self-emp-not-inc, 209642, HS-grad, 9, Married-civ-spouse, Exec-managerial, Husband, White, Male, 0, 0, 45, United-States, 1 31, Private, 45781, Masters, 14, Never-married, Prof-specialty, Not-in-family, White, Female, 14084, 0, 50, United-States, 1
InteractiveContext 생성
마지막으로 이 노트북에서 TFX 구성 요소를 대화식으로 실행할 수 있는 InteractiveContext를 만듭니다.
# Here, we create an InteractiveContext using default parameters. This will
# use a temporary directory with an ephemeral ML Metadata database instance.
# To use your own pipeline root or database, the optional properties
# `pipeline_root` and `metadata_connection_config` may be passed to
# InteractiveContext. Calls to InteractiveContext are no-ops outside of the
# notebook.
context = InteractiveContext()
WARNING:absl:InteractiveContext pipeline_root argument not provided: using temporary directory /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1 as root for pipeline outputs. WARNING:absl:InteractiveContext metadata_connection_config not provided: using SQLite ML Metadata database at /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/metadata.sqlite.
TFX 구성 요소를 대화형으로 실행
다음 셀에서 TFX 구성 요소를 하나씩 생성하고, 각각을 실행하고, 출력 아티팩트를 시각화합니다. 이 노트북에서는 각 TFX 구성 요소에 대한 자세한 설명을 제공하지 않습니다,하지만 당신은 각각에서 무엇을 볼 수 있습니다 TFX Colab 워크샵 .
예제젠
만들기 ExampleGen
, 교육 및 평가 세트로 분할 데이터 구성 요소로 데이터 변환 tf.Example
형식을, 그리고에 데이터를 복사 _tfx_root
액세스 할 수있는 다른 구성 요소에 대한 디렉토리.
example_gen = CsvExampleGen(input=external_input(_data_root))
context.run(example_gen)
WARNING:absl:From <ipython-input-1-2e0190c2dd16>:1: external_input (from tfx.utils.dsl_utils) is deprecated and will be removed in a future version. Instructions for updating: external_input is deprecated, directly pass the uri to ExampleGen. WARNING:absl:The "input" argument to the CsvExampleGen component has been deprecated by "input_base". Please update your usage as support for this argument will be removed soon. INFO:absl:Running driver for CsvExampleGen INFO:absl:MetadataStore with DB connection initialized INFO:absl:select span and version = (0, None) INFO:absl:latest span and version = (0, None) INFO:absl:Running executor for CsvExampleGen INFO:absl:Generating examples. WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. INFO:absl:Processing input csv data /tmp/tfx-datajjx_v0dr/* to TFExample. WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. INFO:absl:Examples generated. INFO:absl:Running publisher for CsvExampleGen INFO:absl:MetadataStore with DB connection initialized
artifact = example_gen.outputs['examples'].get()[0]
print(artifact.split_names, artifact.uri)
["train", "eval"] /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/CsvExampleGen/examples/1
처음 세 가지 교육 예를 살펴보겠습니다.
# Get the URI of the output artifact representing the training examples, which is a directory
train_uri = os.path.join(example_gen.outputs['examples'].get()[0].uri, 'train')
# Get the list of files in this directory (all compressed TFRecord files)
tfrecord_filenames = [os.path.join(train_uri, name)
for name in os.listdir(train_uri)]
# Create a `TFRecordDataset` to read these files
dataset = tf.data.TFRecordDataset(tfrecord_filenames, compression_type="GZIP")
# Iterate over the first 3 records and decode them.
for tfrecord in dataset.take(3):
serialized_example = tfrecord.numpy()
example = tf.train.Example()
example.ParseFromString(serialized_example)
pp.pprint(example)
features { feature { key: "Age" value { int64_list { value: 39 } } } feature { key: "Capital-Gain" value { int64_list { value: 2174 } } } feature { key: "Capital-Loss" value { int64_list { value: 0 } } } feature { key: "Country" value { bytes_list { value: " United-States" } } } feature { key: "Education" value { bytes_list { value: " Bachelors" } } } feature { key: "Education-Num" value { int64_list { value: 13 } } } feature { key: "Hours-per-week" value { int64_list { value: 40 } } } feature { key: "Marital-Status" value { bytes_list { value: " Never-married" } } } feature { key: "Occupation" value { bytes_list { value: " Adm-clerical" } } } feature { key: "Over-50K" value { int64_list { value: 0 } } } feature { key: "Race" value { bytes_list { value: " White" } } } feature { key: "Relationship" value { bytes_list { value: " Not-in-family" } } } feature { key: "Sex" value { bytes_list { value: " Male" } } } feature { key: "Workclass" value { bytes_list { value: " State-gov" } } } feature { key: "fnlwgt" value { int64_list { value: 77516 } } } } features { feature { key: "Age" value { int64_list { value: 50 } } } feature { key: "Capital-Gain" value { int64_list { value: 0 } } } feature { key: "Capital-Loss" value { int64_list { value: 0 } } } feature { key: "Country" value { bytes_list { value: " United-States" } } } feature { key: "Education" value { bytes_list { value: " Bachelors" } } } feature { key: "Education-Num" value { int64_list { value: 13 } } } feature { key: "Hours-per-week" value { int64_list { value: 13 } } } feature { key: "Marital-Status" value { bytes_list { value: " Married-civ-spouse" } } } feature { key: "Occupation" value { bytes_list { value: " Exec-managerial" } } } feature { key: "Over-50K" value { int64_list { value: 0 } } } feature { key: "Race" value { bytes_list { value: " White" } } } feature { key: "Relationship" value { bytes_list { value: " Husband" } } } feature { key: "Sex" value { bytes_list { value: " Male" } } } feature { key: "Workclass" value { bytes_list { value: " Self-emp-not-inc" } } } feature { key: "fnlwgt" value { int64_list { value: 83311 } } } } features { feature { key: "Age" value { int64_list { value: 38 } } } feature { key: "Capital-Gain" value { int64_list { value: 0 } } } feature { key: "Capital-Loss" value { int64_list { value: 0 } } } feature { key: "Country" value { bytes_list { value: " United-States" } } } feature { key: "Education" value { bytes_list { value: " HS-grad" } } } feature { key: "Education-Num" value { int64_list { value: 9 } } } feature { key: "Hours-per-week" value { int64_list { value: 40 } } } feature { key: "Marital-Status" value { bytes_list { value: " Divorced" } } } feature { key: "Occupation" value { bytes_list { value: " Handlers-cleaners" } } } feature { key: "Over-50K" value { int64_list { value: 0 } } } feature { key: "Race" value { bytes_list { value: " White" } } } feature { key: "Relationship" value { bytes_list { value: " Not-in-family" } } } feature { key: "Sex" value { bytes_list { value: " Male" } } } feature { key: "Workclass" value { bytes_list { value: " Private" } } } feature { key: "fnlwgt" value { int64_list { value: 215646 } } } }
통계 생성
StatisticsGen
입력으로 우리가 사용 섭취 데이터 세트 소요 ExampleGen
하고 TensorFlow 데이터 유효성 검사 (TFDV)를 사용하여 데이터 세트의 몇 가지 분석을 수행 할 수 있습니다.
statistics_gen = StatisticsGen(
examples=example_gen.outputs['examples'])
context.run(statistics_gen)
INFO:absl:Excluding no splits because exclude_splits is not set. INFO:absl:Running driver for StatisticsGen INFO:absl:MetadataStore with DB connection initialized INFO:absl:Running executor for StatisticsGen INFO:absl:Generating statistics for split train. INFO:absl:Statistics for split train written to /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/StatisticsGen/statistics/2/train. INFO:absl:Generating statistics for split eval. INFO:absl:Statistics for split eval written to /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/StatisticsGen/statistics/2/eval. INFO:absl:Running publisher for StatisticsGen INFO:absl:MetadataStore with DB connection initialized
후 StatisticsGen
실행이 완료, 우리는 출력 통계를 시각화 할 수 있습니다. 다양한 플롯으로 플레이해보세요!
context.show(statistics_gen.outputs['statistics'])
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_data_validation/utils/stats_util.py:247: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: `tf.data.TFRecordDataset(path)`
스키마젠
SchemaGen
우리가 생성하는 통계 입력으로 소요됩니다 StatisticsGen
기본적으로 교육 분할보고.
schema_gen = SchemaGen(
statistics=statistics_gen.outputs['statistics'],
infer_feature_shape=False)
context.run(schema_gen)
INFO:absl:Excluding no splits because exclude_splits is not set. INFO:absl:Running driver for SchemaGen INFO:absl:MetadataStore with DB connection initialized INFO:absl:Running executor for SchemaGen INFO:absl:Processing schema from statistics for split train. INFO:absl:Processing schema from statistics for split eval. INFO:absl:Schema written to /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/SchemaGen/schema/3/schema.pbtxt. INFO:absl:Running publisher for SchemaGen INFO:absl:MetadataStore with DB connection initialized
context.show(schema_gen.outputs['schema'])
/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_data_validation/utils/display_util.py:151: FutureWarning: Passing a negative integer is deprecated in version 1.0 and will not be supported in future version. Instead, use None to not limit the column width. pd.set_option('max_colwidth', -1)
스키마에 대한 자세한 내용은 다음 페이지를 참조 에서는 schemagen 문서를 .
변환
Transform
입력으로의 데이터 걸릴 ExampleGen
에서 스키마 SchemaGen
뿐만 아니라 사용자 정의 된 코드를 포함하는 변환 모듈.
하자가의 예를 보려면 사용자 정의 (즉, TensorFlow에 대한 소개 API를 변환 아래 코드를 변환 자습서를 참조 ).
_census_income_constants_module_file = 'census_income_constants.py'
%%writefile {_census_income_constants_module_file}
# Categorical features are assumed to each have a maximum value in the dataset.
MAX_CATEGORICAL_FEATURE_VALUES = [20]
CATEGORICAL_FEATURE_KEYS = ["Education-Num"]
DENSE_FLOAT_FEATURE_KEYS = ["Capital-Gain", "Hours-per-week", "Capital-Loss"]
# Number of buckets used by tf.transform for encoding each feature.
FEATURE_BUCKET_COUNT = 10
BUCKET_FEATURE_KEYS = ["Age"]
# Number of vocabulary terms used for encoding VOCAB_FEATURES by tf.transform
VOCAB_SIZE = 200
# Count of out-of-vocab buckets in which unrecognized VOCAB_FEATURES are hashed.
OOV_SIZE = 10
VOCAB_FEATURE_KEYS = ["Workclass", "Education", "Marital-Status", "Occupation",
"Relationship", "Race", "Sex", "Country"]
# Keys
LABEL_KEY = "Over-50K"
def transformed_name(key):
return key + '_xf'
Writing census_income_constants.py
_census_income_transform_module_file = 'census_income_transform.py'
%%writefile {_census_income_transform_module_file}
import tensorflow as tf
import tensorflow_transform as tft
import census_income_constants
_DENSE_FLOAT_FEATURE_KEYS = census_income_constants.DENSE_FLOAT_FEATURE_KEYS
_VOCAB_FEATURE_KEYS = census_income_constants.VOCAB_FEATURE_KEYS
_VOCAB_SIZE = census_income_constants.VOCAB_SIZE
_OOV_SIZE = census_income_constants.OOV_SIZE
_FEATURE_BUCKET_COUNT = census_income_constants.FEATURE_BUCKET_COUNT
_BUCKET_FEATURE_KEYS = census_income_constants.BUCKET_FEATURE_KEYS
_CATEGORICAL_FEATURE_KEYS = census_income_constants.CATEGORICAL_FEATURE_KEYS
_LABEL_KEY = census_income_constants.LABEL_KEY
_transformed_name = census_income_constants.transformed_name
def preprocessing_fn(inputs):
"""tf.transform's callback function for preprocessing inputs.
Args:
inputs: map from feature keys to raw not-yet-transformed features.
Returns:
Map from string feature key to transformed feature operations.
"""
outputs = {}
for key in _DENSE_FLOAT_FEATURE_KEYS:
# Preserve this feature as a dense float, setting nan's to the mean.
outputs[_transformed_name(key)] = tft.scale_to_z_score(
_fill_in_missing(inputs[key]))
for key in _VOCAB_FEATURE_KEYS:
# Build a vocabulary for this feature.
outputs[_transformed_name(key)] = tft.compute_and_apply_vocabulary(
_fill_in_missing(inputs[key]),
top_k=_VOCAB_SIZE,
num_oov_buckets=_OOV_SIZE)
for key in _BUCKET_FEATURE_KEYS:
outputs[_transformed_name(key)] = tft.bucketize(
_fill_in_missing(inputs[key]), _FEATURE_BUCKET_COUNT)
for key in _CATEGORICAL_FEATURE_KEYS:
outputs[_transformed_name(key)] = _fill_in_missing(inputs[key])
label = _fill_in_missing(inputs[_LABEL_KEY])
outputs[_transformed_name(_LABEL_KEY)] = label
return outputs
def _fill_in_missing(x):
"""Replace missing values in a SparseTensor.
Fills in missing values of `x` with '' or 0, and converts to a dense tensor.
Args:
x: A `SparseTensor` of rank 2. Its dense shape should have size at most 1
in the second dimension.
Returns:
A rank 1 tensor where missing values of `x` have been filled in.
"""
default_value = '' if x.dtype == tf.string else 0
return tf.squeeze(
tf.sparse.to_dense(
tf.SparseTensor(x.indices, x.values, [x.dense_shape[0], 1]),
default_value),
axis=1)
Writing census_income_transform.py
transform = Transform(
examples=example_gen.outputs['examples'],
schema=schema_gen.outputs['schema'],
module_file=os.path.abspath(_census_income_transform_module_file))
context.run(transform)
INFO:absl:Running driver for Transform INFO:absl:MetadataStore with DB connection initialized INFO:absl:Running executor for Transform INFO:absl:Analyze the 'train' split and transform all splits when splits_config is not set. WARNING:absl:The default value of `force_tf_compat_v1` will change in a future release from `True` to `False`. Since this pipeline has TF 2 behaviors enabled, Transform will use native TF 2 at that point. You can test this behavior now by passing `force_tf_compat_v1=False` or disable it by explicitly setting `force_tf_compat_v1=True` in the Transform component. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tfx/components/transform/executor.py:541: Schema (from tensorflow_transform.tf_metadata.dataset_schema) is deprecated and will be removed in a future version. Instructions for updating: Schema is a deprecated, use schema_utils.schema_from_feature_spec to create a `Schema` INFO:absl:Loading /tmpfs/src/temp/model_card_toolkit/documentation/examples/census_income_transform.py because it has not been loaded before. INFO:absl:/tmpfs/src/temp/model_card_toolkit/documentation/examples/census_income_transform.py is already loaded. INFO:absl:Feature Age has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Gain has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Loss has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Country has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education-Num has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Hours-per-week has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Marital-Status has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Occupation has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Over-50K has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Race has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Relationship has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Sex has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Workclass has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature fnlwgt has no shape. Setting to VarLenSparseTensor. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_transform/tf_utils.py:261: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Use ref() instead. INFO:absl:Feature Age has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Gain has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Loss has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Country has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education-Num has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Hours-per-week has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Marital-Status has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Occupation has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Over-50K has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Race has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Relationship has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Sex has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Workclass has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature fnlwgt has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Age has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Gain has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Loss has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Country has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education-Num has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Hours-per-week has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Marital-Status has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Occupation has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Over-50K has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Race has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Relationship has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Sex has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Workclass has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature fnlwgt has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Age has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Gain has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Loss has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Country has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education-Num has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Hours-per-week has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Marital-Status has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Occupation has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Over-50K has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Race has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Relationship has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Sex has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Workclass has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature fnlwgt has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Age has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Gain has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Loss has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Country has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education-Num has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Hours-per-week has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Marital-Status has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Occupation has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Over-50K has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Race has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Relationship has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Sex has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Workclass has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature fnlwgt has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Age has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Gain has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Loss has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Country has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education-Num has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Hours-per-week has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Marital-Status has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Occupation has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Over-50K has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Race has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Relationship has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Sex has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Workclass has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature fnlwgt has no shape. Setting to VarLenSparseTensor. WARNING:tensorflow:TFT beam APIs accept both the TFXIO format and the instance dict format now. There is no need to set use_tfxio any more and it will be removed soon. WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType]] instead. WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType]] instead. WARNING:tensorflow:Tensorflow version (2.3.2) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:201: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' INFO:tensorflow:SavedModel written to: /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/Transform/transform_graph/4/.temp_path/tftransform_tmp/259914d385c64e718981569626d0274c/saved_model.pb INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' INFO:tensorflow:SavedModel written to: /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/Transform/transform_graph/4/.temp_path/tftransform_tmp/5a8d2f32189a42faa1a8db83c514c74e/saved_model.pb INFO:absl:Feature Age has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Gain has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Loss has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Country has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education-Num has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Hours-per-week has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Marital-Status has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Occupation has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Over-50K has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Race has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Relationship has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Sex has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Workclass has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature fnlwgt has no shape. Setting to VarLenSparseTensor. WARNING:tensorflow:Tensorflow version (2.3.2) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'> WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'> WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'> WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'> WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'> WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'> INFO:absl:Feature Age has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Gain has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Capital-Loss has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Country has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Education-Num has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Hours-per-week has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Marital-Status has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Occupation has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Over-50K has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Race has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Relationship has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Sex has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature Workclass has no shape. Setting to VarLenSparseTensor. INFO:absl:Feature fnlwgt has no shape. Setting to VarLenSparseTensor. WARNING:tensorflow:Tensorflow version (2.3.2) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'> WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'> WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'> WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'> WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'> WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'> INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/Transform/transform_graph/4/.temp_path/tftransform_tmp/f4e3edcb37534b60889ae56fa82df09f/assets INFO:tensorflow:SavedModel written to: /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/Transform/transform_graph/4/.temp_path/tftransform_tmp/f4e3edcb37534b60889ae56fa82df09f/saved_model.pb WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_2:0\022-vocab_compute_and_apply_vocabulary_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_4:0\022/vocab_compute_and_apply_vocabulary_1_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_6:0\022/vocab_compute_and_apply_vocabulary_2_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_8:0\022/vocab_compute_and_apply_vocabulary_3_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_10:0\022/vocab_compute_and_apply_vocabulary_4_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_12:0\022/vocab_compute_and_apply_vocabulary_5_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_14:0\022/vocab_compute_and_apply_vocabulary_6_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_16:0\022/vocab_compute_and_apply_vocabulary_7_vocabulary" INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_2:0\022-vocab_compute_and_apply_vocabulary_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_4:0\022/vocab_compute_and_apply_vocabulary_1_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_6:0\022/vocab_compute_and_apply_vocabulary_2_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_8:0\022/vocab_compute_and_apply_vocabulary_3_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_10:0\022/vocab_compute_and_apply_vocabulary_4_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_12:0\022/vocab_compute_and_apply_vocabulary_5_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_14:0\022/vocab_compute_and_apply_vocabulary_6_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_16:0\022/vocab_compute_and_apply_vocabulary_7_vocabulary" INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_2:0\022-vocab_compute_and_apply_vocabulary_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_4:0\022/vocab_compute_and_apply_vocabulary_1_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_6:0\022/vocab_compute_and_apply_vocabulary_2_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_8:0\022/vocab_compute_and_apply_vocabulary_3_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_10:0\022/vocab_compute_and_apply_vocabulary_4_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_12:0\022/vocab_compute_and_apply_vocabulary_5_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_14:0\022/vocab_compute_and_apply_vocabulary_6_vocabulary" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_16:0\022/vocab_compute_and_apply_vocabulary_7_vocabulary" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:absl:Running publisher for Transform INFO:absl:MetadataStore with DB connection initialized
transform.outputs
{'transform_graph': Channel( type_name: TransformGraph artifacts: [Artifact(artifact: id: 4 type_id: 11 uri: "/tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/Transform/transform_graph/4" custom_properties { key: "name" value { string_value: "transform_graph" } } custom_properties { key: "producer_component" value { string_value: "Transform" } } custom_properties { key: "state" value { string_value: "published" } } state: LIVE , artifact_type: id: 11 name: "TransformGraph" )] ), 'transformed_examples': Channel( type_name: Examples artifacts: [Artifact(artifact: id: 5 type_id: 5 uri: "/tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/Transform/transformed_examples/4" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "name" value { string_value: "transformed_examples" } } custom_properties { key: "producer_component" value { string_value: "Transform" } } custom_properties { key: "state" value { string_value: "published" } } state: LIVE , artifact_type: id: 5 name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )] ), 'updated_analyzer_cache': Channel( type_name: TransformCache artifacts: [Artifact(artifact: id: 6 type_id: 12 uri: "/tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/Transform/updated_analyzer_cache/4" custom_properties { key: "name" value { string_value: "updated_analyzer_cache" } } custom_properties { key: "producer_component" value { string_value: "Transform" } } custom_properties { key: "state" value { string_value: "published" } } state: LIVE , artifact_type: id: 12 name: "TransformCache" )] )}
훈련자
하자합니다 (TensorFlow Keras API에 대한 소개는 아래의 사용자 정의 모델 코드의 예를 참조 자습서를 참조 )
_census_income_trainer_module_file = 'census_income_trainer.py'
%%writefile {_census_income_trainer_module_file}
from typing import List, Text
import os
import absl
import datetime
import tensorflow as tf
import tensorflow_transform as tft
from tfx.components.trainer.executor import TrainerFnArgs
import census_income_constants
_DENSE_FLOAT_FEATURE_KEYS = census_income_constants.DENSE_FLOAT_FEATURE_KEYS
_VOCAB_FEATURE_KEYS = census_income_constants.VOCAB_FEATURE_KEYS
_VOCAB_SIZE = census_income_constants.VOCAB_SIZE
_OOV_SIZE = census_income_constants.OOV_SIZE
_FEATURE_BUCKET_COUNT = census_income_constants.FEATURE_BUCKET_COUNT
_BUCKET_FEATURE_KEYS = census_income_constants.BUCKET_FEATURE_KEYS
_CATEGORICAL_FEATURE_KEYS = census_income_constants.CATEGORICAL_FEATURE_KEYS
_MAX_CATEGORICAL_FEATURE_VALUES = census_income_constants.MAX_CATEGORICAL_FEATURE_VALUES
_LABEL_KEY = census_income_constants.LABEL_KEY
_transformed_name = census_income_constants.transformed_name
def _transformed_names(keys):
return [_transformed_name(key) for key in keys]
def _gzip_reader_fn(filenames):
"""Small utility returning a record reader that can read gzip'ed files."""
return tf.data.TFRecordDataset(
filenames,
compression_type='GZIP')
def _get_serve_tf_examples_fn(model, tf_transform_output):
"""Returns a function that parses a serialized tf.Example and applies TFT."""
model.tft_layer = tf_transform_output.transform_features_layer()
@tf.function
def serve_tf_examples_fn(serialized_tf_examples):
"""Returns the output to be used in the serving signature."""
feature_spec = tf_transform_output.raw_feature_spec()
feature_spec.pop(_LABEL_KEY)
parsed_features = tf.io.parse_example(serialized_tf_examples, feature_spec)
transformed_features = model.tft_layer(parsed_features)
if _transformed_name(_LABEL_KEY) in transformed_features:
transformed_features.pop(_transformed_name(_LABEL_KEY))
return model(transformed_features)
return serve_tf_examples_fn
def _input_fn(file_pattern: List[Text],
tf_transform_output: tft.TFTransformOutput,
batch_size: int = 200) -> tf.data.Dataset:
"""Generates features and label for tuning/training.
Args:
file_pattern: List of paths or patterns of input tfrecord files.
tf_transform_output: A TFTransformOutput.
batch_size: representing the number of consecutive elements of returned
dataset to combine in a single batch
Returns:
A dataset that contains (features, indices) tuple where features is a
dictionary of Tensors, and indices is a single Tensor of label indices.
"""
transformed_feature_spec = (
tf_transform_output.transformed_feature_spec().copy())
dataset = tf.data.experimental.make_batched_features_dataset(
file_pattern=file_pattern,
batch_size=batch_size,
features=transformed_feature_spec,
reader=_gzip_reader_fn,
label_key=_transformed_name(_LABEL_KEY))
return dataset
def _build_keras_model(hidden_units: List[int] = None) -> tf.keras.Model:
"""Creates a DNN Keras model.
Args:
hidden_units: [int], the layer sizes of the DNN (input layer first).
Returns:
A keras Model.
"""
real_valued_columns = [
tf.feature_column.numeric_column(key, shape=())
for key in _transformed_names(_DENSE_FLOAT_FEATURE_KEYS)
]
categorical_columns = [
tf.feature_column.categorical_column_with_identity(
key, num_buckets=_VOCAB_SIZE + _OOV_SIZE, default_value=0)
for key in _transformed_names(_VOCAB_FEATURE_KEYS)
]
categorical_columns += [
tf.feature_column.categorical_column_with_identity(
key, num_buckets=_FEATURE_BUCKET_COUNT, default_value=0)
for key in _transformed_names(_BUCKET_FEATURE_KEYS)
]
categorical_columns += [
tf.feature_column.categorical_column_with_identity( # pylint: disable=g-complex-comprehension
key,
num_buckets=num_buckets,
default_value=0) for key, num_buckets in zip(
_transformed_names(_CATEGORICAL_FEATURE_KEYS),
_MAX_CATEGORICAL_FEATURE_VALUES)
]
indicator_column = [
tf.feature_column.indicator_column(categorical_column)
for categorical_column in categorical_columns
]
model = _wide_and_deep_classifier(
# TODO(b/139668410) replace with premade wide_and_deep keras model
wide_columns=indicator_column,
deep_columns=real_valued_columns,
dnn_hidden_units=hidden_units or [100, 70, 50, 25])
return model
def _wide_and_deep_classifier(wide_columns, deep_columns, dnn_hidden_units):
"""Build a simple keras wide and deep model.
Args:
wide_columns: Feature columns wrapped in indicator_column for wide (linear)
part of the model.
deep_columns: Feature columns for deep part of the model.
dnn_hidden_units: [int], the layer sizes of the hidden DNN.
Returns:
A Wide and Deep Keras model
"""
# Following values are hard coded for simplicity in this example,
# However prefarably they should be passsed in as hparams.
# Keras needs the feature definitions at compile time.
# TODO(b/139081439): Automate generation of input layers from FeatureColumn.
input_layers = {
colname: tf.keras.layers.Input(name=colname, shape=(), dtype=tf.float32)
for colname in _transformed_names(_DENSE_FLOAT_FEATURE_KEYS)
}
input_layers.update({
colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32')
for colname in _transformed_names(_VOCAB_FEATURE_KEYS)
})
input_layers.update({
colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32')
for colname in _transformed_names(_BUCKET_FEATURE_KEYS)
})
input_layers.update({
colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32')
for colname in _transformed_names(_CATEGORICAL_FEATURE_KEYS)
})
# TODO(b/161816639): SparseFeatures for feature columns + Keras.
deep = tf.keras.layers.DenseFeatures(deep_columns)(input_layers)
for numnodes in dnn_hidden_units:
deep = tf.keras.layers.Dense(numnodes)(deep)
wide = tf.keras.layers.DenseFeatures(wide_columns)(input_layers)
output = tf.keras.layers.Dense(
1, activation='sigmoid')(
tf.keras.layers.concatenate([deep, wide]))
model = tf.keras.Model(input_layers, output)
model.compile(
loss='binary_crossentropy',
optimizer=tf.keras.optimizers.Adam(lr=0.001),
metrics=[tf.keras.metrics.BinaryAccuracy()])
model.summary(print_fn=absl.logging.info)
return model
# TFX Trainer will call this function.
def run_fn(fn_args: TrainerFnArgs):
"""Train the model based on given args.
Args:
fn_args: Holds args used to train the model as name/value pairs.
"""
# Number of nodes in the first layer of the DNN
first_dnn_layer_size = 100
num_dnn_layers = 4
dnn_decay_factor = 0.7
tf_transform_output = tft.TFTransformOutput(fn_args.transform_output)
train_dataset = _input_fn(fn_args.train_files, tf_transform_output, 40)
eval_dataset = _input_fn(fn_args.eval_files, tf_transform_output, 40)
model = _build_keras_model(
# Construct layers sizes with exponetial decay
hidden_units=[
max(2, int(first_dnn_layer_size * dnn_decay_factor**i))
for i in range(num_dnn_layers)
])
# This log path might change in the future.
log_dir = os.path.join(os.path.dirname(fn_args.serving_model_dir), 'logs')
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir=log_dir, update_freq='batch')
model.fit(
train_dataset,
steps_per_epoch=fn_args.train_steps,
validation_data=eval_dataset,
validation_steps=fn_args.eval_steps,
callbacks=[tensorboard_callback])
signatures = {
'serving_default':
_get_serve_tf_examples_fn(model,
tf_transform_output).get_concrete_function(
tf.TensorSpec(
shape=[None],
dtype=tf.string,
name='examples')),
}
model.save(fn_args.serving_model_dir, save_format='tf', signatures=signatures)
Writing census_income_trainer.py
trainer = Trainer(
module_file=os.path.abspath(_census_income_trainer_module_file),
custom_executor_spec=executor_spec.ExecutorClassSpec(GenericExecutor),
examples=transform.outputs['transformed_examples'],
transform_graph=transform.outputs['transform_graph'],
schema=schema_gen.outputs['schema'],
train_args=trainer_pb2.TrainArgs(num_steps=100),
eval_args=trainer_pb2.EvalArgs(num_steps=50))
context.run(trainer)
WARNING:absl:From <ipython-input-1-6ab3bbf2f5a0>:3: The name tfx.components.base.executor_spec.ExecutorClassSpec is deprecated. Please use tfx.dsl.components.base.executor_spec.ExecutorClassSpec instead. INFO:absl:Running driver for Trainer INFO:absl:MetadataStore with DB connection initialized INFO:absl:Running executor for Trainer INFO:absl:Train on the 'train' split when train_args.splits is not set. INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set. WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE INFO:absl:Loading /tmpfs/src/temp/model_card_toolkit/documentation/examples/census_income_trainer.py because it has not been loaded before. INFO:absl:Training model. INFO:absl:Model: "functional_1" INFO:absl:__________________________________________________________________________________________________ INFO:absl:Layer (type) Output Shape Param # Connected to INFO:absl:================================================================================================== INFO:absl:Age_xf (InputLayer) [(None,)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:Capital-Gain_xf (InputLayer) [(None,)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:Capital-Loss_xf (InputLayer) [(None,)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:Country_xf (InputLayer) [(None,)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:Education-Num_xf (InputLayer) [(None,)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:Education_xf (InputLayer) [(None,)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:Hours-per-week_xf (InputLayer) [(None,)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:Marital-Status_xf (InputLayer) [(None,)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:Occupation_xf (InputLayer) [(None,)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:Race_xf (InputLayer) [(None,)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:Relationship_xf (InputLayer) [(None,)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:Sex_xf (InputLayer) [(None,)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:Workclass_xf (InputLayer) [(None,)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_features (DenseFeatures) (None, 3) 0 Age_xf[0][0] INFO:absl: Capital-Gain_xf[0][0] INFO:absl: Capital-Loss_xf[0][0] INFO:absl: Country_xf[0][0] INFO:absl: Education-Num_xf[0][0] INFO:absl: Education_xf[0][0] INFO:absl: Hours-per-week_xf[0][0] INFO:absl: Marital-Status_xf[0][0] INFO:absl: Occupation_xf[0][0] INFO:absl: Race_xf[0][0] INFO:absl: Relationship_xf[0][0] INFO:absl: Sex_xf[0][0] INFO:absl: Workclass_xf[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense (Dense) (None, 100) 400 dense_features[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_1 (Dense) (None, 70) 7070 dense[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_2 (Dense) (None, 48) 3408 dense_1[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_3 (Dense) (None, 34) 1666 dense_2[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_features_1 (DenseFeatures (None, 1710) 0 Age_xf[0][0] INFO:absl: Capital-Gain_xf[0][0] INFO:absl: Capital-Loss_xf[0][0] INFO:absl: Country_xf[0][0] INFO:absl: Education-Num_xf[0][0] INFO:absl: Education_xf[0][0] INFO:absl: Hours-per-week_xf[0][0] INFO:absl: Marital-Status_xf[0][0] INFO:absl: Occupation_xf[0][0] INFO:absl: Race_xf[0][0] INFO:absl: Relationship_xf[0][0] INFO:absl: Sex_xf[0][0] INFO:absl: Workclass_xf[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:concatenate (Concatenate) (None, 1744) 0 dense_3[0][0] INFO:absl: dense_features_1[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_4 (Dense) (None, 1) 1745 concatenate[0][0] INFO:absl:================================================================================================== INFO:absl:Total params: 14,289 INFO:absl:Trainable params: 14,289 INFO:absl:Non-trainable params: 0 INFO:absl:__________________________________________________________________________________________________ 1/100 [..............................] - ETA: 0s - loss: 0.7236 - binary_accuracy: 0.2250WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and will be removed after 2020-07-01. Instructions for updating: use `tf.profiler.experimental.stop` instead. WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0029s vs `on_train_batch_end` time: 0.0135s). Check your callbacks. 100/100 [==============================] - 1s 9ms/step - loss: 0.5104 - binary_accuracy: 0.7710 - val_loss: 0.4469 - val_binary_accuracy: 0.8005 INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version. Instructions for updating: This property should not be used in TensorFlow 2.0, as updates are applied automatically. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version. Instructions for updating: This property should not be used in TensorFlow 2.0, as updates are applied automatically. INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/Trainer/model/5/serving_model_dir/assets INFO:absl:Training complete. Model written to /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/Trainer/model/5/serving_model_dir. ModelRun written to /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/Trainer/model_run/5 INFO:absl:Running publisher for Trainer INFO:absl:MetadataStore with DB connection initialized
평가자
Evaluator
구성 요소는 평가 세트 이상 모델 성능 메트릭을 계산한다. 그것은 사용 TensorFlow 모델 분석 라이브러리를.
Evaluator
입력으로의 데이터 걸릴 것 ExampleGen
에서 훈련 모델 Trainer
와 슬라이스 구성. 슬라이싱 구성을 사용하면 기능 값에 대한 메트릭을 슬라이싱할 수 있습니다. 아래에서 이 구성의 예를 참조하십시오.
from google.protobuf.wrappers_pb2 import BoolValue
eval_config = tfma.EvalConfig(
model_specs=[
# This assumes a serving model with signature 'serving_default'. If
# using estimator based EvalSavedModel, add signature_name: 'eval' and
# remove the label_key.
tfma.ModelSpec(label_key="Over-50K")
],
metrics_specs=[
tfma.MetricsSpec(
# The metrics added here are in addition to those saved with the
# model (assuming either a keras model or EvalSavedModel is used).
# Any metrics added into the saved model (for example using
# model.compile(..., metrics=[...]), etc) will be computed
# automatically.
# To add validation thresholds for metrics saved with the model,
# add them keyed by metric name to the thresholds map.
metrics=[
tfma.MetricConfig(class_name='ExampleCount'),
tfma.MetricConfig(class_name='BinaryAccuracy'),
tfma.MetricConfig(class_name='FairnessIndicators',
config='{ "thresholds": [0.5] }'),
]
)
],
slicing_specs=[
# An empty slice spec means the overall slice, i.e. the whole dataset.
tfma.SlicingSpec(),
# Data can be sliced along a feature column. In this case, data is
# sliced by feature column Race and Sex.
tfma.SlicingSpec(feature_keys=['Race']),
tfma.SlicingSpec(feature_keys=['Sex']),
tfma.SlicingSpec(feature_keys=['Race', 'Sex']),
],
options = tfma.Options(compute_confidence_intervals=BoolValue(value=True))
)
# Use TFMA to compute a evaluation statistics over features of a model and
# validate them against a baseline.
evaluator = Evaluator(
examples=example_gen.outputs['examples'],
model=trainer.outputs['model'],
eval_config=eval_config)
context.run(evaluator)
INFO:absl:Running driver for Evaluator INFO:absl:MetadataStore with DB connection initialized INFO:absl:Running executor for Evaluator WARNING:absl:"maybe_add_baseline" and "maybe_remove_baseline" are deprecated, please use "has_baseline" instead. INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "Over-50K" } slicing_specs { } slicing_specs { feature_keys: "Race" } slicing_specs { feature_keys: "Sex" } slicing_specs { feature_keys: "Race" feature_keys: "Sex" } metrics_specs { metrics { class_name: "ExampleCount" } metrics { class_name: "BinaryAccuracy" } metrics { class_name: "FairnessIndicators" config: "{ \"thresholds\": [0.5] }" } } options { compute_confidence_intervals { value: true } confidence_intervals { method: JACKKNIFE } } INFO:absl:Using /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/Trainer/model/5/serving_model_dir as model. INFO:absl:The 'example_splits' parameter is not set, using 'eval' split. INFO:absl:Evaluating model. INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "Over-50K" } slicing_specs { } slicing_specs { feature_keys: "Race" } slicing_specs { feature_keys: "Sex" } slicing_specs { feature_keys: "Race" feature_keys: "Sex" } metrics_specs { metrics { class_name: "ExampleCount" } metrics { class_name: "BinaryAccuracy" } metrics { class_name: "FairnessIndicators" config: "{ \"thresholds\": [0.5] }" } model_names: "" } options { compute_confidence_intervals { value: true } confidence_intervals { method: JACKKNIFE } } INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "Over-50K" } slicing_specs { } slicing_specs { feature_keys: "Race" } slicing_specs { feature_keys: "Sex" } slicing_specs { feature_keys: "Race" feature_keys: "Sex" } metrics_specs { metrics { class_name: "ExampleCount" } metrics { class_name: "BinaryAccuracy" } metrics { class_name: "FairnessIndicators" config: "{ \"thresholds\": [0.5] }" } model_names: "" } options { compute_confidence_intervals { value: true } confidence_intervals { method: JACKKNIFE } } INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "Over-50K" } slicing_specs { } slicing_specs { feature_keys: "Race" } slicing_specs { feature_keys: "Sex" } slicing_specs { feature_keys: "Race" feature_keys: "Sex" } metrics_specs { metrics { class_name: "ExampleCount" } metrics { class_name: "BinaryAccuracy" } metrics { class_name: "FairnessIndicators" config: "{ \"thresholds\": [0.5] }" } model_names: "" } options { compute_confidence_intervals { value: true } confidence_intervals { method: JACKKNIFE } } WARNING:tensorflow:5 out of the last 5 calls to <function recreate_function.<locals>.restored_function_body at 0x7f77a02d2510> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details. INFO:absl:Evaluation complete. Results written to /tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/Evaluator/evaluation/6. INFO:absl:No threshold configured, will not validate model. INFO:absl:Running publisher for Evaluator INFO:absl:MetadataStore with DB connection initialized
evaluator.outputs
{'evaluation': Channel( type_name: ModelEvaluation artifacts: [Artifact(artifact: id: 9 type_id: 17 uri: "/tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/Evaluator/evaluation/6" custom_properties { key: "name" value { string_value: "evaluation" } } custom_properties { key: "producer_component" value { string_value: "Evaluator" } } custom_properties { key: "state" value { string_value: "published" } } state: LIVE , artifact_type: id: 17 name: "ModelEvaluation" )] ), 'blessing': Channel( type_name: ModelBlessing artifacts: [Artifact(artifact: id: 10 type_id: 18 uri: "/tmp/tfx-interactive-2021-02-05T22_01_17.129037-teowo3b1/Evaluator/blessing/6" custom_properties { key: "name" value { string_value: "blessing" } } custom_properties { key: "producer_component" value { string_value: "Evaluator" } } custom_properties { key: "state" value { string_value: "published" } } state: LIVE , artifact_type: id: 18 name: "ModelBlessing" )] )}
은 Using evaluation
출력하는 것은 우리는 전체 평가 세트에 세계 측정의 기본 시각화를 표시 할 수 있습니다.
context.show(evaluator.outputs['evaluation'])
Model Card Toolkit으로 ModelCard에서 속성 채우기
이제 TFX 파이프라인을 설정했으므로 Model Card Toolkit을 사용하여 실행에서 주요 아티팩트를 추출하고 모델 카드를 채웁니다.
InteractiveContext에서 사용하는 MLMD 저장소에 연결합니다.
from ml_metadata.metadata_store import metadata_store
from IPython import display
mlmd_store = metadata_store.MetadataStore(context.metadata_connection_config)
model_uri = trainer.outputs["model"].get()[0].uri
INFO:absl:MetadataStore with DB connection initialized
모델 카드 툴킷 사용
모델 카드 도구 키트를 초기화합니다.
from model_card_toolkit import ModelCardToolkit
mct = ModelCardToolkit(mlmd_store=mlmd_store, model_uri=model_uri)
모델 카드 작업 공간을 만듭니다.
model_card = mct.scaffold_assets()
모델 카드에 추가 정보를 주석으로 추가합니다.
제한 사항, 의도된 사용 사례, 트레이드 오프 및 윤리적 고려 사항과 같이 다운스트림 사용자에게 중요할 수 있는 모델 정보를 문서화하는 것도 중요합니다. 이러한 각 섹션에 대해 이 정보를 나타내는 새 JSON 개체를 직접 추가할 수 있습니다.
model_card.model_details.name = 'Census Income Classifier'
model_card.model_details.overview = (
'This is a wide and deep Keras model which aims to classify whether or not '
'an individual has an income of over $50,000 based on various demographic '
'features. The model is trained on the UCI Census Income Dataset. This is '
'not a production model, and this dataset has traditionally only been used '
'for research purposes. In this Model Card, you can review quantitative '
'components of the model’s performance and data, as well as information '
'about the model’s intended uses, limitations, and ethical considerations.'
)
model_card.model_details.owners = [
{'name': 'Model Cards Team', 'contact': 'model-cards@google.com'}
]
model_card.considerations.use_cases = [
'This dataset that this model was trained on was originally created to '
'support the machine learning community in conducting empirical analysis '
'of ML algorithms. The Adult Data Set can be used in fairness-related '
'studies that compare inequalities across sex and race, based on '
'people’s annual incomes.'
]
model_card.considerations.limitations = [
'This is a class-imbalanced dataset across a variety of sensitive classes.'
' The ratio of male-to-female examples is about 2:1 and there are far more'
' examples with the “white” attribute than every other race combined. '
'Furthermore, the ratio of $50,000 or less earners to $50,000 or more '
'earners is just over 3:1. Due to the imbalance across income levels, we '
'can see that our true negative rate seems quite high, while our true '
'positive rate seems quite low. This is true to an even greater degree '
'when we only look at the “female” sub-group, because there are even '
'fewer female examples in the $50,000+ earner group, causing our model to '
'overfit these examples. To avoid this, we can try various remediation '
'strategies in future iterations (e.g. undersampling, hyperparameter '
'tuning, etc), but we may not be able to fix all of the fairness issues.'
]
model_card.considerations.ethical_considerations = [{
'name':
'We risk expressing the viewpoint that the attributes in this dataset '
'are the only ones that are predictive of someone’s income, even '
'though we know this is not the case.',
'mitigation_strategy':
'As mentioned, some interventions may need to be performed to address '
'the class imbalances in the dataset.'
}]
그래프를 필터링하고 추가합니다.
아래에 정의된 함수를 사용하여 모델 카드와 가장 관련성이 높은 그래프를 포함하도록 TFX 구성 요소에 의해 생성된 그래프를 필터링할 수 있습니다. 이 예에서는 필터링 race
과 sex
,이 개 잠재적으로 민감한 특성을.
각 모델 카드에는 교육 데이터 세트 통계, 평가 데이터 세트 통계 및 모델 성능의 정량적 분석과 같은 그래프용 섹션이 최대 3개 있습니다.
# These are the graphs that will appear in the Quantiative Analysis portion of
# the Model Card. Feel free to add or remove from this list.
TARGET_EVAL_GRAPH_NAMES = [
'fairness_indicators_metrics/false_positive_rate@0.5',
'fairness_indicators_metrics/false_negative_rate@0.5',
'binary_accuracy',
'example_count | Race_X_Sex',
]
# These are the graphs that will appear in both the Train Set and Eval Set
# portions of the Model Card. Feel free to add or remove from this list.
TARGET_DATASET_GRAPH_NAMES = [
'counts | Race',
'counts | Sex',
]
def filter_graphs(graphics, target_graph_names):
result = []
for graph in graphics:
for target_graph_name in target_graph_names:
if graph.name.startswith(target_graph_name):
result.append(graph)
result.sort(key=lambda g: g.name)
return result
# Populating the three different sections using the filter defined above. To
# see all the graphs available in a section, we can iterate through each of the
# different collections.
model_card.quantitative_analysis.graphics.collection = filter_graphs(
model_card.quantitative_analysis.graphics.collection, TARGET_EVAL_GRAPH_NAMES)
model_card.model_parameters.data.eval.graphics.collection = filter_graphs(
model_card.model_parameters.data.eval.graphics.collection, TARGET_DATASET_GRAPH_NAMES)
model_card.model_parameters.data.train.graphics.collection = filter_graphs(
model_card.model_parameters.data.train.graphics.collection, TARGET_DATASET_GRAPH_NAMES)
그런 다음 각 그래프 섹션에 대한 설명(선택 사항)을 추가합니다.
model_card.model_parameters.data.train.graphics.description = (
'This section includes graphs displaying the class distribution for the '
'“Race” and “Sex” attributes in our training dataset. We chose to '
'show these graphs in particular because we felt it was important that '
'users see the class imbalance.'
)
model_card.model_parameters.data.eval.graphics.description = (
'Like the training set, we provide graphs showing the class distribution '
'of the data we used to evaluate our model’s performance. '
)
model_card.quantitative_analysis.graphics.description = (
'These graphs show how the model performs for data sliced by “Race”, '
'“Sex” and the intersection of these attributes. The metrics we chose '
'to display are “Accuracy”, “False Positive Rate”, and “False '
'Negative Rate”, because we anticipated that the class imbalances might '
'cause our model to underperform for certain groups.'
)
mct.update_model_card_json(model_card)
모델 카드를 생성합니다.
이제 모델 카드를 HTML 형식으로 표시할 수 있습니다.
html = mct.export_format()
display.display(display.HTML(html))