Avalie os riscos de privacidade com o relatório de privacidade do TensorFlow

Visão geral

Neste codelab, você treinará um modelo de classificação de imagem simples no conjunto de dados CIFAR10 e, em seguida, usará o "ataque de inferência de associação" contra este modelo para avaliar se o invasor é capaz de "adivinhar" se uma amostra específica estava presente no conjunto de treinamento . Você usará o Relatório de privacidade do TF para visualizar os resultados de vários modelos e pontos de verificação de modelo.

Configurar

import numpy as np
from typing import Tuple
from scipy import special
from sklearn import metrics

import tensorflow as tf

import tensorflow_datasets as tfds

# Set verbosity.
tf
.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
from sklearn.exceptions import ConvergenceWarning

import warnings
warnings
.simplefilter(action="ignore", category=ConvergenceWarning)
warnings
.simplefilter(action="ignore", category=FutureWarning)

Instale o TensorFlow Privacy.

pip install tensorflow_privacy
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import membership_inference_attack as mia
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackInputData
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackResultsCollection
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackType
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import PrivacyMetric
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import PrivacyReportMetadata
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import SlicingSpec
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import privacy_report
import tensorflow_privacy

Treine dois modelos, com métricas de privacidade

Esta secção treina um par de keras.Model classificadores no CIFAR-10 do conjunto de dados. Durante o processo de treinamento ele coleta métricas de privacidade, que serão utilizadas para gerar relatórios na seção anterior.

A primeira etapa é definir alguns hiperparâmetros:

dataset = 'cifar10'
num_classes
= 10
activation
= 'relu'
num_conv
= 3

batch_size
=50
epochs_per_report
= 2
total_epochs
= 50

lr
= 0.001

Em seguida, carregue o conjunto de dados. Não há nada específico de privacidade neste código.

print('Loading the dataset.')
train_ds
= tfds.as_numpy(
    tfds
.load(dataset, split=tfds.Split.TRAIN, batch_size=-1))
test_ds
= tfds.as_numpy(
    tfds
.load(dataset, split=tfds.Split.TEST, batch_size=-1))
x_train
= train_ds['image'].astype('float32') / 255.
y_train_indices
= train_ds['label'][:, np.newaxis]
x_test
= test_ds['image'].astype('float32') / 255.
y_test_indices
= test_ds['label'][:, np.newaxis]

# Convert class vectors to binary class matrices.
y_train
= tf.keras.utils.to_categorical(y_train_indices, num_classes)
y_test
= tf.keras.utils.to_categorical(y_test_indices, num_classes)

input_shape
= x_train.shape[1:]

assert x_train.shape[0] % batch_size == 0, "The tensorflow_privacy optimizer doesn't handle partial batches"

Loading the dataset.

Em seguida, defina uma função para construir os modelos.

def small_cnn(input_shape: Tuple[int],
              num_classes
: int,
              num_conv
: int,
              activation
: str = 'relu') -> tf.keras.models.Sequential:
 
"""Setup a small CNN for image classification.

  Args:
    input_shape: Integer tuple for the shape of the images.
    num_classes: Number of prediction classes.
    num_conv: Number of convolutional layers.
    activation: The activation function to use for conv and dense layers.

  Returns:
    The Keras model.
  """

  model
= tf.keras.models.Sequential()
  model
.add(tf.keras.layers.Input(shape=input_shape))

 
# Conv layers
 
for _ in range(num_conv):
    model
.add(tf.keras.layers.Conv2D(32, (3, 3), activation=activation))
    model
.add(tf.keras.layers.MaxPooling2D())

  model
.add(tf.keras.layers.Flatten())
  model
.add(tf.keras.layers.Dense(64, activation=activation))
  model
.add(tf.keras.layers.Dense(num_classes))

  model
.compile(
    loss
=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
    optimizer
=tf.keras.optimizers.Adam(learning_rate=lr),
    metrics
=['accuracy'])

 
return model

Construa dois modelos CNN de três camadas usando essa função.

Configurar o primeiro a usar um otimizador básica SGD, um segundo para usar um otimizador diferencialmente privada ( tf_privacy.DPKerasAdamOptimizer ), para que você possa comparar os resultados.

model_2layers = small_cnn(
    input_shape
, num_classes, num_conv=2, activation=activation)
model_3layers
= small_cnn(
    input_shape
, num_classes, num_conv=3, activation=activation)

Defina um retorno de chamada para coletar métricas de privacidade

Em seguida definir uma keras.callbacks.Callback para executar periorically alguns ataques de privacidade contra o modelo, e registrar os resultados.

Os keras fit método irá chamar o on_epoch_end método depois de cada época treinamento. O n argumento é o (baseado em 0) número época.

Você poderia implementar este procedimento, escrevendo um loop que chama repetidamente Model.fit(..., epochs=epochs_per_report) e executa o código de ataque. O retorno de chamada é usado aqui apenas porque fornece uma separação clara entre a lógica de treinamento e a lógica de avaliação de privacidade.

class PrivacyMetrics(tf.keras.callbacks.Callback):
 
def __init__(self, epochs_per_report, model_name):
   
self.epochs_per_report = epochs_per_report
   
self.model_name = model_name
   
self.attack_results = []

 
def on_epoch_end(self, epoch, logs=None):
    epoch
= epoch+1

   
if epoch % self.epochs_per_report != 0:
     
return

   
print(f'\nRunning privacy report for epoch: {epoch}\n')

    logits_train
= self.model.predict(x_train, batch_size=batch_size)
    logits_test
= self.model.predict(x_test, batch_size=batch_size)

    prob_train
= special.softmax(logits_train, axis=1)
    prob_test
= special.softmax(logits_test, axis=1)

   
# Add metadata to generate a privacy report.
    privacy_report_metadata
= PrivacyReportMetadata(
       
# Show the validation accuracy on the plot
       
# It's what you send to train_accuracy that gets plotted.
        accuracy_train
=logs['val_accuracy'],
        accuracy_test
=logs['val_accuracy'],
        epoch_num
=epoch,
        model_variant_label
=self.model_name)

    attack_results
= mia.run_attacks(
       
AttackInputData(
            labels_train
=y_train_indices[:, 0],
            labels_test
=y_test_indices[:, 0],
            probs_train
=prob_train,
            probs_test
=prob_test),
       
SlicingSpec(entire_dataset=True, by_class=True),
        attack_types
=(AttackType.THRESHOLD_ATTACK,
                     
AttackType.LOGISTIC_REGRESSION),
        privacy_report_metadata
=privacy_report_metadata)

   
self.attack_results.append(attack_results)

Treine os modelos

O próximo bloco de código treina os dois modelos. O all_reports lista é usada para recolher todos os resultados de todas as corridas de treinamento dos modelos. Os relatórios individuais são com etiquetas witht o model_name , por isso não há confusão sobre qual modelo gerado que relatório.

all_reports = []
callback = PrivacyMetrics(epochs_per_report, "2 Layers")
history
= model_2layers.fit(
      x_train
,
      y_train
,
      batch_size
=batch_size,
      epochs
=total_epochs,
      validation_data
=(x_test, y_test),
      callbacks
=[callback],
      shuffle
=True)

all_reports
.extend(callback.attack_results)
Epoch 1/50
1000/1000 [==============================] - 13s 4ms/step - loss: 1.5146 - accuracy: 0.4573 - val_loss: 1.2374 - val_accuracy: 0.5660
Epoch 2/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.1933 - accuracy: 0.5811 - val_loss: 1.1873 - val_accuracy: 0.5851

Running privacy report for epoch: 2

Epoch 3/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.0694 - accuracy: 0.6246 - val_loss: 1.0526 - val_accuracy: 0.6310
Epoch 4/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.9911 - accuracy: 0.6548 - val_loss: 0.9906 - val_accuracy: 0.6549

Running privacy report for epoch: 4

Epoch 5/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.9348 - accuracy: 0.6743 - val_loss: 0.9712 - val_accuracy: 0.6617
Epoch 6/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8881 - accuracy: 0.6912 - val_loss: 0.9595 - val_accuracy: 0.6671

Running privacy report for epoch: 6

Epoch 7/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8495 - accuracy: 0.7024 - val_loss: 0.9574 - val_accuracy: 0.6684
Epoch 8/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8147 - accuracy: 0.7161 - val_loss: 0.9397 - val_accuracy: 0.6740

Running privacy report for epoch: 8

Epoch 9/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7820 - accuracy: 0.7263 - val_loss: 0.9325 - val_accuracy: 0.6837
Epoch 10/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7533 - accuracy: 0.7362 - val_loss: 0.9431 - val_accuracy: 0.6843

Running privacy report for epoch: 10

Epoch 11/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7169 - accuracy: 0.7477 - val_loss: 0.9310 - val_accuracy: 0.6795
Epoch 12/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6892 - accuracy: 0.7569 - val_loss: 0.9043 - val_accuracy: 0.6975

Running privacy report for epoch: 12

Epoch 13/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6677 - accuracy: 0.7663 - val_loss: 0.9401 - val_accuracy: 0.6796
Epoch 14/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6401 - accuracy: 0.7741 - val_loss: 0.9464 - val_accuracy: 0.6880

Running privacy report for epoch: 14

Epoch 15/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6177 - accuracy: 0.7821 - val_loss: 0.9359 - val_accuracy: 0.6930
Epoch 16/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5978 - accuracy: 0.7913 - val_loss: 0.9634 - val_accuracy: 0.6896

Running privacy report for epoch: 16

Epoch 17/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5745 - accuracy: 0.7973 - val_loss: 0.9941 - val_accuracy: 0.6932
Epoch 18/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5553 - accuracy: 0.8036 - val_loss: 0.9790 - val_accuracy: 0.6974

Running privacy report for epoch: 18

Epoch 19/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5376 - accuracy: 0.8103 - val_loss: 0.9989 - val_accuracy: 0.6907
Epoch 20/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5152 - accuracy: 0.8192 - val_loss: 1.0245 - val_accuracy: 0.6878

Running privacy report for epoch: 20

Epoch 21/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5048 - accuracy: 0.8208 - val_loss: 1.0223 - val_accuracy: 0.6852
Epoch 22/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.4847 - accuracy: 0.8284 - val_loss: 1.0498 - val_accuracy: 0.6866

Running privacy report for epoch: 22

Epoch 23/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.4722 - accuracy: 0.8325 - val_loss: 1.0610 - val_accuracy: 0.6899
Epoch 24/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.4562 - accuracy: 0.8387 - val_loss: 1.0973 - val_accuracy: 0.6771

Running privacy report for epoch: 24

Epoch 25/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.4392 - accuracy: 0.8447 - val_loss: 1.1141 - val_accuracy: 0.6865
Epoch 26/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.4269 - accuracy: 0.8485 - val_loss: 1.1928 - val_accuracy: 0.6771

Running privacy report for epoch: 26

Epoch 27/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.4135 - accuracy: 0.8533 - val_loss: 1.1945 - val_accuracy: 0.6758
Epoch 28/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.4053 - accuracy: 0.8569 - val_loss: 1.2244 - val_accuracy: 0.6716

Running privacy report for epoch: 28

Epoch 29/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3880 - accuracy: 0.8611 - val_loss: 1.2362 - val_accuracy: 0.6789
Epoch 30/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3805 - accuracy: 0.8630 - val_loss: 1.2815 - val_accuracy: 0.6805

Running privacy report for epoch: 30

Epoch 31/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3756 - accuracy: 0.8656 - val_loss: 1.2973 - val_accuracy: 0.6762
Epoch 32/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3565 - accuracy: 0.8719 - val_loss: 1.3022 - val_accuracy: 0.6810

Running privacy report for epoch: 32

Epoch 33/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3494 - accuracy: 0.8749 - val_loss: 1.3248 - val_accuracy: 0.6756
Epoch 34/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3371 - accuracy: 0.8790 - val_loss: 1.3941 - val_accuracy: 0.6806

Running privacy report for epoch: 34

Epoch 35/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3248 - accuracy: 0.8839 - val_loss: 1.4391 - val_accuracy: 0.6666
Epoch 36/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3233 - accuracy: 0.8833 - val_loss: 1.5060 - val_accuracy: 0.6692

Running privacy report for epoch: 36

Epoch 37/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3109 - accuracy: 0.8882 - val_loss: 1.4624 - val_accuracy: 0.6724
Epoch 38/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3057 - accuracy: 0.8900 - val_loss: 1.5133 - val_accuracy: 0.6644

Running privacy report for epoch: 38

Epoch 39/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2929 - accuracy: 0.8949 - val_loss: 1.5465 - val_accuracy: 0.6618
Epoch 40/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2868 - accuracy: 0.8970 - val_loss: 1.5882 - val_accuracy: 0.6696

Running privacy report for epoch: 40

Epoch 41/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2778 - accuracy: 0.8982 - val_loss: 1.6317 - val_accuracy: 0.6713
Epoch 42/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2782 - accuracy: 0.8999 - val_loss: 1.6993 - val_accuracy: 0.6630

Running privacy report for epoch: 42

Epoch 43/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2675 - accuracy: 0.9039 - val_loss: 1.7294 - val_accuracy: 0.6645
Epoch 44/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2587 - accuracy: 0.9068 - val_loss: 1.7614 - val_accuracy: 0.6561

Running privacy report for epoch: 44

Epoch 45/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2528 - accuracy: 0.9076 - val_loss: 1.7835 - val_accuracy: 0.6564
Epoch 46/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2410 - accuracy: 0.9129 - val_loss: 1.8550 - val_accuracy: 0.6648

Running privacy report for epoch: 46

Epoch 47/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2409 - accuracy: 0.9106 - val_loss: 1.8705 - val_accuracy: 0.6572
Epoch 48/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2328 - accuracy: 0.9146 - val_loss: 1.9110 - val_accuracy: 0.6593

Running privacy report for epoch: 48

Epoch 49/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2299 - accuracy: 0.9164 - val_loss: 1.9468 - val_accuracy: 0.6634
Epoch 50/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2250 - accuracy: 0.9178 - val_loss: 2.0154 - val_accuracy: 0.6610

Running privacy report for epoch: 50
callback = PrivacyMetrics(epochs_per_report, "3 Layers")
history
= model_3layers.fit(
      x_train
,
      y_train
,
      batch_size
=batch_size,
      epochs
=total_epochs,
      validation_data
=(x_test, y_test),
      callbacks
=[callback],
      shuffle
=True)

all_reports
.extend(callback.attack_results)
Epoch 1/50
1000/1000 [==============================] - 4s 4ms/step - loss: 1.6838 - accuracy: 0.3772 - val_loss: 1.4805 - val_accuracy: 0.4552
Epoch 2/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.3938 - accuracy: 0.4969 - val_loss: 1.3291 - val_accuracy: 0.5276

Running privacy report for epoch: 2

Epoch 3/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.2564 - accuracy: 0.5510 - val_loss: 1.2313 - val_accuracy: 0.5627
Epoch 4/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.1610 - accuracy: 0.5884 - val_loss: 1.1251 - val_accuracy: 0.6039

Running privacy report for epoch: 4

Epoch 5/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.1034 - accuracy: 0.6105 - val_loss: 1.1168 - val_accuracy: 0.6063
Epoch 6/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.0476 - accuracy: 0.6319 - val_loss: 1.0716 - val_accuracy: 0.6248

Running privacy report for epoch: 6

Epoch 7/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.0107 - accuracy: 0.6461 - val_loss: 1.0264 - val_accuracy: 0.6407
Epoch 8/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.9731 - accuracy: 0.6597 - val_loss: 1.0216 - val_accuracy: 0.6447

Running privacy report for epoch: 8

Epoch 9/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.9437 - accuracy: 0.6712 - val_loss: 1.0016 - val_accuracy: 0.6467
Epoch 10/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.9191 - accuracy: 0.6790 - val_loss: 0.9845 - val_accuracy: 0.6553

Running privacy report for epoch: 10

Epoch 11/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8923 - accuracy: 0.6877 - val_loss: 0.9560 - val_accuracy: 0.6670
Epoch 12/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8722 - accuracy: 0.6959 - val_loss: 0.9518 - val_accuracy: 0.6686

Running privacy report for epoch: 12

Epoch 13/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8495 - accuracy: 0.7029 - val_loss: 0.9427 - val_accuracy: 0.6787
Epoch 14/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8305 - accuracy: 0.7116 - val_loss: 0.9247 - val_accuracy: 0.6814

Running privacy report for epoch: 14

Epoch 15/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8164 - accuracy: 0.7157 - val_loss: 0.9263 - val_accuracy: 0.6797
Epoch 16/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7973 - accuracy: 0.7220 - val_loss: 0.9151 - val_accuracy: 0.6850

Running privacy report for epoch: 16

Epoch 17/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7830 - accuracy: 0.7277 - val_loss: 0.9139 - val_accuracy: 0.6842
Epoch 18/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7704 - accuracy: 0.7294 - val_loss: 0.9384 - val_accuracy: 0.6774

Running privacy report for epoch: 18

Epoch 19/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7539 - accuracy: 0.7366 - val_loss: 0.9508 - val_accuracy: 0.6761
Epoch 20/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7445 - accuracy: 0.7412 - val_loss: 0.9108 - val_accuracy: 0.6908

Running privacy report for epoch: 20

Epoch 21/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7343 - accuracy: 0.7418 - val_loss: 0.9161 - val_accuracy: 0.6855
Epoch 22/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7213 - accuracy: 0.7458 - val_loss: 0.9754 - val_accuracy: 0.6724

Running privacy report for epoch: 22

Epoch 23/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7133 - accuracy: 0.7487 - val_loss: 0.8936 - val_accuracy: 0.6984
Epoch 24/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7072 - accuracy: 0.7504 - val_loss: 0.8872 - val_accuracy: 0.7002

Running privacy report for epoch: 24

Epoch 25/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6932 - accuracy: 0.7570 - val_loss: 0.9732 - val_accuracy: 0.6769
Epoch 26/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6883 - accuracy: 0.7578 - val_loss: 0.9332 - val_accuracy: 0.6798

Running privacy report for epoch: 26

Epoch 27/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6766 - accuracy: 0.7614 - val_loss: 0.9069 - val_accuracy: 0.6998
Epoch 28/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6656 - accuracy: 0.7662 - val_loss: 0.8879 - val_accuracy: 0.7011

Running privacy report for epoch: 28

Epoch 29/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6594 - accuracy: 0.7674 - val_loss: 0.8988 - val_accuracy: 0.7037
Epoch 30/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6499 - accuracy: 0.7700 - val_loss: 0.9086 - val_accuracy: 0.7001

Running privacy report for epoch: 30

Epoch 31/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6420 - accuracy: 0.7746 - val_loss: 0.8985 - val_accuracy: 0.7034
Epoch 32/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6354 - accuracy: 0.7742 - val_loss: 0.9089 - val_accuracy: 0.7018

Running privacy report for epoch: 32

Epoch 33/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6293 - accuracy: 0.7759 - val_loss: 0.9258 - val_accuracy: 0.6947
Epoch 34/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6192 - accuracy: 0.7851 - val_loss: 0.9326 - val_accuracy: 0.6976

Running privacy report for epoch: 34

Epoch 35/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6157 - accuracy: 0.7831 - val_loss: 0.9240 - val_accuracy: 0.6973
Epoch 36/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6063 - accuracy: 0.7853 - val_loss: 0.9504 - val_accuracy: 0.6971

Running privacy report for epoch: 36

Epoch 37/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6036 - accuracy: 0.7867 - val_loss: 0.9025 - val_accuracy: 0.7094
Epoch 38/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5958 - accuracy: 0.7877 - val_loss: 0.9290 - val_accuracy: 0.6976

Running privacy report for epoch: 38

Epoch 39/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5900 - accuracy: 0.7919 - val_loss: 0.9379 - val_accuracy: 0.6963
Epoch 40/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5856 - accuracy: 0.7928 - val_loss: 0.9911 - val_accuracy: 0.6896

Running privacy report for epoch: 40

Epoch 41/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5772 - accuracy: 0.7944 - val_loss: 0.9093 - val_accuracy: 0.7059
Epoch 42/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5752 - accuracy: 0.7940 - val_loss: 0.9275 - val_accuracy: 0.7061

Running privacy report for epoch: 42

Epoch 43/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5645 - accuracy: 0.7998 - val_loss: 0.9208 - val_accuracy: 0.7025
Epoch 44/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5632 - accuracy: 0.8000 - val_loss: 0.9746 - val_accuracy: 0.6976

Running privacy report for epoch: 44

Epoch 45/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5557 - accuracy: 0.8045 - val_loss: 0.9211 - val_accuracy: 0.7098
Epoch 46/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5469 - accuracy: 0.8073 - val_loss: 0.9357 - val_accuracy: 0.7055

Running privacy report for epoch: 46

Epoch 47/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5438 - accuracy: 0.8062 - val_loss: 0.9495 - val_accuracy: 0.7025
Epoch 48/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5437 - accuracy: 0.8069 - val_loss: 0.9509 - val_accuracy: 0.6994

Running privacy report for epoch: 48

Epoch 49/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5414 - accuracy: 0.8066 - val_loss: 0.9780 - val_accuracy: 0.6939
Epoch 50/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5321 - accuracy: 0.8108 - val_loss: 1.0109 - val_accuracy: 0.6846

Running privacy report for epoch: 50

Epoch Plots

Você pode visualizar como os riscos de privacidade acontecem conforme você treina modelos testando o modelo periodicamente (por exemplo, a cada 5 épocas), você pode escolher o momento com a melhor relação desempenho / privacidade.

Use o TF Privacidade módulo Membership Inference Ataque para gerar AttackResults . Estes AttackResults se combinados em um AttackResultsCollection . O Relatório TF Privacidade é projetado para analisar o fornecido AttackResultsCollection .

results = AttackResultsCollection(all_reports)
privacy_metrics = (PrivacyMetric.AUC, PrivacyMetric.ATTACKER_ADVANTAGE)
epoch_plot
= privacy_report.plot_by_epochs(
    results
, privacy_metrics=privacy_metrics)

png

Veja que, via de regra, a vulnerabilidade da privacidade tende a aumentar à medida que aumenta o número de épocas. Isso é verdadeiro em todas as variantes de modelo, bem como em diferentes tipos de invasores.

Modelos de duas camadas (com menos camadas convolucionais) são geralmente mais vulneráveis ​​do que suas contrapartes de modelo de três camadas.

Agora vamos ver como o desempenho do modelo muda em relação ao risco de privacidade.

Privacidade vs Utilidade

privacy_metrics = (PrivacyMetric.AUC, PrivacyMetric.ATTACKER_ADVANTAGE)
utility_privacy_plot
= privacy_report.plot_privacy_vs_accuracy(
    results
, privacy_metrics=privacy_metrics)

for axis in utility_privacy_plot.axes:
  axis
.set_xlabel('Validation accuracy')

png

Modelos de três camadas (talvez devido a muitos parâmetros) alcançam apenas uma precisão de trem de 0,85. Os modelos de duas camadas alcançam desempenho quase igual para esse nível de risco de privacidade, mas continuam a obter melhor precisão.

Você também pode ver como a linha para modelos de duas camadas fica mais íngreme. Isso significa que ganhos marginais adicionais na precisão do trem custam grandes vulnerabilidades de privacidade.

Este é o fim do tutorial. Sinta-se à vontade para analisar seus próprios resultados.