TensorFlow ব্যবহার করে আপনার ML ওয়ার্কফ্লোতে কীভাবে দায়িত্বশীল AI অনুশীলনগুলিকে একীভূত করতে হয় তা শিখুন
TensorFlow ML সম্প্রদায়ের সাথে সম্পদ এবং সরঞ্জামগুলির একটি সংগ্রহ ভাগ করে AI এর দায়িত্বশীল বিকাশে অগ্রগতিতে সহায়তা করতে প্রতিশ্রুতিবদ্ধ।
দায়ী এআই কি?
AI এর বিকাশ চ্যালেঞ্জিং, বাস্তব-বিশ্বের সমস্যা সমাধানের নতুন সুযোগ তৈরি করছে। এটি এআই সিস্টেম তৈরির সর্বোত্তম উপায় সম্পর্কে নতুন প্রশ্নও উত্থাপন করছে যা সকলের উপকারে আসে।
AI এর জন্য প্রস্তাবিত সেরা অনুশীলন
মানব-কেন্দ্রিক নেওয়ার সময় এআই সিস্টেম ডিজাইন করা সফ্টওয়্যার বিকাশের সর্বোত্তম অনুশীলনগুলি অনুসরণ করা উচিত
ML-এর প্রতি দৃষ্টিভঙ্গি
ন্যায্যতা
সেক্টর এবং সমাজ জুড়ে AI-এর প্রভাব বাড়ার সাথে সাথে প্রত্যেকের জন্য ন্যায্য এবং অন্তর্ভুক্তিমূলক সিস্টেমগুলির দিকে কাজ করা গুরুত্বপূর্ণ
ব্যাখ্যাযোগ্যতা
এআই সিস্টেমগুলিকে বোঝা এবং বিশ্বাস করা গুরুত্বপূর্ণ তা নিশ্চিত করার জন্য যে তারা উদ্দেশ্য অনুযায়ী কাজ করছে
গোপনীয়তা
সংবেদনশীল ডেটা থেকে দূরে প্রশিক্ষণের মডেলগুলির গোপনীয়তা রক্ষার সুরক্ষার প্রয়োজন৷
নিরাপত্তা
সম্ভাব্য হুমকি শনাক্ত করা AI সিস্টেমকে নিরাপদ ও সুরক্ষিত রাখতে সাহায্য করতে পারে
আপনার এমএল ওয়ার্কফ্লোতে দায়ী এআই
দায়িত্বশীল AI অনুশীলনগুলি ML কর্মপ্রবাহের প্রতিটি ধাপে অন্তর্ভুক্ত করা যেতে পারে। প্রতিটি পর্যায়ে বিবেচনা করার জন্য এখানে কিছু মূল প্রশ্ন রয়েছে।
আমার এমএল সিস্টেম কার জন্য?
প্রকৃত ব্যবহারকারীরা আপনার সিস্টেমকে যেভাবে অনুভব করেন তা এর পূর্বাভাস, সুপারিশ এবং সিদ্ধান্তের প্রকৃত প্রভাব মূল্যায়ন করার জন্য অপরিহার্য। আপনার ডেভেলপমেন্ট প্রক্রিয়ার প্রথম দিকে ব্যবহারকারীদের বিভিন্ন সেট থেকে ইনপুট পাওয়ার বিষয়টি নিশ্চিত করুন।
আমি কি একটি প্রতিনিধি ডেটাসেট ব্যবহার করছি?
আপনার ডেটা কি এমনভাবে নমুনা করা হয়েছে যা আপনার ব্যবহারকারীদের প্রতিনিধিত্ব করে (যেমন সব বয়সের জন্য ব্যবহার করা হবে, তবে আপনার কাছে শুধুমাত্র সিনিয়র নাগরিকদের প্রশিক্ষণের ডেটা আছে) এবং বাস্তব-বিশ্বের সেটিং (যেমন সারা বছর ব্যবহার করা হবে, কিন্তু আপনার শুধুমাত্র প্রশিক্ষণ আছে গ্রীষ্ম থেকে তথ্য)?
আমার ডেটাতে কি বাস্তব-বিশ্ব/মানব পক্ষপাত আছে?
ডেটাতে অন্তর্নিহিত পক্ষপাতগুলি জটিল প্রতিক্রিয়া লুপগুলিতে অবদান রাখতে পারে যা বিদ্যমান স্টেরিওটাইপগুলিকে শক্তিশালী করে।
আমার মডেল প্রশিক্ষণের জন্য আমি কোন পদ্ধতি ব্যবহার করা উচিত?
প্রশিক্ষণের পদ্ধতিগুলি ব্যবহার করুন যা মডেলটিতে ন্যায্যতা, ব্যাখ্যাযোগ্যতা, গোপনীয়তা এবং সুরক্ষা তৈরি করে।
আমার মডেল কেমন কাজ করছে?
ব্যবহারকারীদের বিস্তৃত বর্ণালী জুড়ে বাস্তব-বিশ্বের পরিস্থিতিতে ব্যবহারকারীর অভিজ্ঞতা মূল্যায়ন করুন, কেস এবং ব্যবহারের প্রসঙ্গ। প্রথমে ডগফুডে পরীক্ষা করুন এবং পুনরাবৃত্তি করুন, তারপরে লঞ্চের পর ক্রমাগত পরীক্ষা করুন৷
জটিল প্রতিক্রিয়া লুপ আছে?
এমনকি সামগ্রিক সিস্টেম ডিজাইনের সবকিছু সাবধানে তৈরি করা হলেও, বাস্তব, লাইভ ডেটাতে প্রয়োগ করা হলে ML-ভিত্তিক মডেলগুলি খুব কমই 100% পরিপূর্ণতার সাথে কাজ করে। যখন একটি লাইভ পণ্যে একটি সমস্যা দেখা দেয়, তখন বিবেচনা করুন যে এটি কোনো বিদ্যমান সামাজিক অসুবিধার সাথে সারিবদ্ধ কিনা এবং কীভাবে এটি স্বল্প এবং দীর্ঘমেয়াদী উভয় সমাধান দ্বারা প্রভাবিত হবে।
TensorFlow এর জন্য দায়ী এআই টুল
টেনসরফ্লো ইকোসিস্টেমে উপরের কয়েকটি প্রশ্ন মোকাবেলায় সহায়তা করার জন্য সরঞ্জাম এবং সংস্থানগুলির একটি স্যুট রয়েছে।
সমস্যা সংজ্ঞায়িত করুন
দায়বদ্ধ AI মাথায় রেখে মডেল ডিজাইন করতে নিম্নলিখিত সংস্থানগুলি ব্যবহার করুন৷

এআই বিকাশ প্রক্রিয়া এবং মূল বিবেচনা সম্পর্কে আরও জানুন।

দায়বদ্ধ AI এর ক্ষেত্রে ইন্টারেক্টিভ ভিজ্যুয়ালাইজেশন, মূল প্রশ্ন এবং ধারণাগুলির মাধ্যমে অন্বেষণ করুন।
ডেটা তৈরি এবং প্রস্তুত করুন
সম্ভাব্য পক্ষপাতের জন্য ডেটা পরীক্ষা করতে নিম্নলিখিত সরঞ্জামগুলি ব্যবহার করুন।

ডেটার গুণমান উন্নত করতে এবং ন্যায্যতা এবং পক্ষপাতের সমস্যাগুলি প্রশমিত করতে ইন্টারেক্টিভভাবে আপনার ডেটাসেট তদন্ত করুন।

সমস্যা সনাক্ত করতে ডেটা বিশ্লেষণ এবং রূপান্তর করুন এবং আরও কার্যকর বৈশিষ্ট্য সেট তৈরি করুন।


আপনার ডেটা সংগ্রহ এবং মডেল বিল্ডিংকে আরও শক্তিশালী এবং অন্তর্ভুক্ত করার জন্য একটি আরও অন্তর্ভুক্তিমূলক স্কিন টোন স্কেল, খোলা লাইসেন্সযুক্ত।
মডেল তৈরি এবং ট্রেন
গোপনীয়তা-সংরক্ষণ, ব্যাখ্যাযোগ্য কৌশল এবং আরও অনেক কিছু ব্যবহার করে মডেলদের প্রশিক্ষণ দিতে নিম্নলিখিত সরঞ্জামগুলি ব্যবহার করুন৷
মডেল মূল্যায়ন
নিম্নলিখিত সরঞ্জামগুলি ব্যবহার করে মডেল কর্মক্ষমতা ডিবাগ, মূল্যায়ন এবং কল্পনা করুন৷

বাইনারি এবং মাল্টি-ক্লাস ক্লাসিফায়ারের জন্য সাধারণভাবে চিহ্নিত ন্যায্যতা মেট্রিক্স মূল্যায়ন করুন।

একটি বিতরণ পদ্ধতিতে মডেলগুলি মূল্যায়ন করুন এবং ডেটার বিভিন্ন স্লাইস ধরে গণনা করুন।




স্থাপন এবং নিরীক্ষণ
মডেলের প্রসঙ্গ এবং বিবরণ সম্পর্কে ট্র্যাক এবং যোগাযোগ করতে নিম্নলিখিত সরঞ্জামগুলি ব্যবহার করুন৷


এমএল ডেভেলপার এবং ডেটা সায়েন্টিস্ট ওয়ার্কফ্লোগুলির সাথে যুক্ত মেটাডেটা রেকর্ড এবং পুনরুদ্ধার করুন।

সম্প্রদায়ের সম্পদ
সম্প্রদায় কী করছে তা জানুন এবং জড়িত হওয়ার উপায়গুলি অন্বেষণ করুন৷

Google-এর পণ্যগুলিকে আপনার ভাষা, অঞ্চল এবং সংস্কৃতির আরও অন্তর্ভুক্ত এবং প্রতিনিধিত্ব করতে সাহায্য করুন৷

আমরা অংশগ্রহণকারীদের টেন্সরফ্লো 2.2 ব্যবহার করতে বলেছিলাম যাতে দায়বদ্ধ AI নীতিগুলি মাথায় রেখে একটি মডেল বা অ্যাপ্লিকেশন তৈরি করা যায়। বিজয়ীদের এবং অন্যান্য আশ্চর্যজনক প্রকল্পগুলি দেখতে গ্যালারিটি দেখুন।

এমএল, ন্যায্যতা এবং গোপনীয়তা সম্পর্কে চিন্তা করার জন্য একটি কাঠামো প্রবর্তন করা হচ্ছে।