Lihat di TensorFlow.org | Jalankan di Google Colab | Lihat sumber di GitHub | Unduh buku catatan |
Menyimpan model atau bobot/parameter model "terbaik" secara terus-menerus memiliki banyak manfaat. Ini termasuk kemampuan untuk melacak kemajuan pelatihan dan memuat model yang disimpan dari berbagai status tersimpan.
Di TensorFlow 1, untuk mengonfigurasi penyimpanan pos pemeriksaan selama pelatihan/validasi dengan tf.estimator.Estimator
API, Anda menentukan jadwal di tf.estimator.RunConfig
atau menggunakan tf.estimator.CheckpointSaverHook
. Panduan ini menunjukkan cara bermigrasi dari alur kerja ini ke TensorFlow 2 Keras API.
Di TensorFlow 2, Anda dapat mengonfigurasi tf.keras.callbacks.ModelCheckpoint
dengan beberapa cara:
- Simpan versi "terbaik" menurut metrik yang dipantau menggunakan parameter
save_best_only=True
, di manamonitor
dapat berupa, misalnya,'loss'
,'val_loss'
,'accuracy', or
'val_accuracy'`. - Simpan terus menerus pada frekuensi tertentu (menggunakan argumen
save_freq
). - Simpan bobot/parameter saja alih-alih seluruh model dengan menyetel
save_weights_only
keTrue
.
Untuk detail selengkapnya, lihat dokumen tf.keras.callbacks.ModelCheckpoint
API dan bagian Simpan pos pemeriksaan selama pelatihan di tutorial Simpan dan muat model . Pelajari lebih lanjut tentang format Checkpoint di bagian format TF Checkpoint di panduan Simpan dan muat model Keras . Selain itu, untuk menambah toleransi kesalahan, Anda dapat menggunakan tf.keras.callbacks.BackupAndRestore
atau tf.train.Checkpoint
untuk pemeriksaan manual. Pelajari lebih lanjut di Panduan migrasi toleransi kesalahan .
Callback Keras adalah objek yang dipanggil pada titik yang berbeda selama pelatihan/evaluasi/prediksi dalam Keras Model.fit
/ Model.evaluate
/ Model.predict
API bawaan. Pelajari lebih lanjut di bagian Langkah berikutnya di akhir panduan.
Mempersiapkan
Mulailah dengan impor dan kumpulan data sederhana untuk tujuan demonstrasi:
import tensorflow.compat.v1 as tf1
import tensorflow as tf
import numpy as np
import tempfile
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 11493376/11490434 [==============================] - 0s 0us/step 11501568/11490434 [==============================] - 0s 0us/step
TensorFlow 1: Simpan pos pemeriksaan dengan tf.estimator API
Contoh TensorFlow 1 ini menunjukkan cara mengonfigurasi tf.estimator.RunConfig
untuk menyimpan pos pemeriksaan di setiap langkah selama pelatihan/evaluasi dengan API tf.estimator.Estimator
:
feature_columns = [tf1.feature_column.numeric_column("x", shape=[28, 28])]
config = tf1.estimator.RunConfig(save_summary_steps=1,
save_checkpoints_steps=1)
path = tempfile.mkdtemp()
classifier = tf1.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[256, 32],
optimizer=tf1.train.AdamOptimizer(0.001),
n_classes=10,
dropout=0.2,
model_dir=path,
config = config
)
train_input_fn = tf1.estimator.inputs.numpy_input_fn(
x={"x": x_train},
y=y_train.astype(np.int32),
num_epochs=10,
batch_size=50,
shuffle=True,
)
test_input_fn = tf1.estimator.inputs.numpy_input_fn(
x={"x": x_test},
y=y_test.astype(np.int32),
num_epochs=10,
shuffle=False
)
train_spec = tf1.estimator.TrainSpec(input_fn=train_input_fn, max_steps=10)
eval_spec = tf1.estimator.EvalSpec(input_fn=test_input_fn,
steps=10,
throttle_secs=0)
tf1.estimator.train_and_evaluate(estimator=classifier,
train_spec=train_spec,
eval_spec=eval_spec)
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmplrkjo9in', '_tf_random_seed': None, '_save_summary_steps': 1, '_save_checkpoints_steps': 1, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} WARNING:tensorflow:From /tmp/ipykernel_20296/3980459272.py:18: The name tf.estimator.inputs is deprecated. Please use tf.compat.v1.estimator.inputs instead. WARNING:tensorflow:From /tmp/ipykernel_20296/3980459272.py:18: The name tf.estimator.inputs.numpy_input_fn is deprecated. Please use tf.compat.v1.estimator.inputs.numpy_input_fn instead. INFO:tensorflow:Not using Distribute Coordinator. INFO:tensorflow:Running training and evaluation locally (non-distributed). INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 1 or save_checkpoints_secs None. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:397: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_queue_runner.py:65: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_functions.py:491: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/monitored_session.py:914: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmplrkjo9in/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1... INFO:tensorflow:Saving checkpoints for 1 into /tmp/tmplrkjo9in/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:47 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-1 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.26374s INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:47 INFO:tensorflow:Saving dict for global step 1: accuracy = 0.1765625, average_loss = 2.2546134, global_step = 1, loss = 288.5905 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 1: /tmp/tmplrkjo9in/model.ckpt-1 INFO:tensorflow:loss = 118.3231, step = 0 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 2... INFO:tensorflow:Saving checkpoints for 2 into /tmp/tmplrkjo9in/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 2... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:48 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-2 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.36662s INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:48 INFO:tensorflow:Saving dict for global step 2: accuracy = 0.2859375, average_loss = 2.1868849, global_step = 2, loss = 279.92126 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 2: /tmp/tmplrkjo9in/model.ckpt-2 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 3... INFO:tensorflow:Saving checkpoints for 3 into /tmp/tmplrkjo9in/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 3... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:48 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-3 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.22792s INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:48 INFO:tensorflow:Saving dict for global step 3: accuracy = 0.35078126, average_loss = 2.1220195, global_step = 3, loss = 271.6185 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 3: /tmp/tmplrkjo9in/model.ckpt-3 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4... INFO:tensorflow:Saving checkpoints for 4 into /tmp/tmplrkjo9in/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:49 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-4 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.22387s INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:49 INFO:tensorflow:Saving dict for global step 4: accuracy = 0.40234375, average_loss = 2.0655982, global_step = 4, loss = 264.39658 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 4: /tmp/tmplrkjo9in/model.ckpt-4 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 5... INFO:tensorflow:Saving checkpoints for 5 into /tmp/tmplrkjo9in/model.ckpt. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/saver.py:1054: remove_checkpoint (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to delete files with this prefix. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 5... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:49 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-5 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.22548s INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:49 INFO:tensorflow:Saving dict for global step 5: accuracy = 0.42421874, average_loss = 2.0072064, global_step = 5, loss = 256.92242 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 5: /tmp/tmplrkjo9in/model.ckpt-5 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 6... INFO:tensorflow:Saving checkpoints for 6 into /tmp/tmplrkjo9in/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 6... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:50 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-6 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.22806s INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:50 INFO:tensorflow:Saving dict for global step 6: accuracy = 0.43984374, average_loss = 1.9473753, global_step = 6, loss = 249.26404 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 6: /tmp/tmplrkjo9in/model.ckpt-6 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 7... INFO:tensorflow:Saving checkpoints for 7 into /tmp/tmplrkjo9in/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 7... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:50 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-7 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.23091s INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:50 INFO:tensorflow:Saving dict for global step 7: accuracy = 0.44296876, average_loss = 1.8903366, global_step = 7, loss = 241.96309 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 7: /tmp/tmplrkjo9in/model.ckpt-7 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 8... INFO:tensorflow:Saving checkpoints for 8 into /tmp/tmplrkjo9in/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 8... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:51 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-8 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.22453s INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:51 INFO:tensorflow:Saving dict for global step 8: accuracy = 0.44453126, average_loss = 1.8294731, global_step = 8, loss = 234.17256 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 8: /tmp/tmplrkjo9in/model.ckpt-8 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 9... INFO:tensorflow:Saving checkpoints for 9 into /tmp/tmplrkjo9in/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 9... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:51 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-9 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.22271s INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:51 INFO:tensorflow:Saving dict for global step 9: accuracy = 0.47734374, average_loss = 1.7674354, global_step = 9, loss = 226.23174 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 9: /tmp/tmplrkjo9in/model.ckpt-9 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10... INFO:tensorflow:Saving checkpoints for 10 into /tmp/tmplrkjo9in/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:52 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-10 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.38483s INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:52 INFO:tensorflow:Saving dict for global step 10: accuracy = 0.5140625, average_loss = 1.7108486, global_step = 10, loss = 218.98862 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 10: /tmp/tmplrkjo9in/model.ckpt-10 INFO:tensorflow:Loss for final step: 96.2236. ({'accuracy': 0.5140625, 'average_loss': 1.7108486, 'loss': 218.98862, 'global_step': 10}, [])
%ls {classifier.model_dir}
checkpoint eval/ events.out.tfevents.1642127326.kokoro-gcp-ubuntu-prod-837339153 graph.pbtxt model.ckpt-10.data-00000-of-00001 model.ckpt-10.index model.ckpt-10.meta model.ckpt-6.data-00000-of-00001 model.ckpt-6.index model.ckpt-6.meta model.ckpt-7.data-00000-of-00001 model.ckpt-7.index model.ckpt-7.meta model.ckpt-8.data-00000-of-00001 model.ckpt-8.index model.ckpt-8.meta model.ckpt-9.data-00000-of-00001 model.ckpt-9.index model.ckpt-9.meta
TensorFlow 2: Simpan pos pemeriksaan dengan panggilan balik Keras untuk Model.fit
Di TensorFlow 2, saat Anda menggunakan Keras Model.fit
(atau Model.evaluate
) bawaan untuk pelatihan/evaluasi, Anda dapat mengonfigurasi tf.keras.callbacks.ModelCheckpoint
lalu meneruskannya ke parameter callbacks
Model.fit
(atau Model. Model.evaluate
). (Pelajari lebih lanjut di dokumen API dan bagian Menggunakan callback di Pelatihan dan evaluasi dengan panduan metode bawaan.)
Pada contoh di bawah, Anda akan menggunakan panggilan balik tf.keras.callbacks.ModelCheckpoint
untuk menyimpan pos pemeriksaan di direktori sementara:
def create_model():
return tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model = create_model()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'],
steps_per_execution=10)
log_dir = tempfile.mkdtemp()
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=log_dir)
model.fit(x=x_train,
y=y_train,
epochs=10,
validation_data=(x_test, y_test),
callbacks=[model_checkpoint_callback])
Epoch 1/10 1840/1875 [============================>.] - ETA: 0s - loss: 0.2224 - accuracy: 0.9348 2022-01-14 02:28:56.714889: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 4s 2ms/step - loss: 0.2208 - accuracy: 0.9354 - val_loss: 0.1132 - val_accuracy: 0.9669 Epoch 2/10 1870/1875 [============================>.] - ETA: 0s - loss: 0.0961 - accuracy: 0.9706INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0962 - accuracy: 0.9706 - val_loss: 0.0784 - val_accuracy: 0.9753 Epoch 3/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0696 - accuracy: 0.9781INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0695 - accuracy: 0.9782 - val_loss: 0.0684 - val_accuracy: 0.9788 Epoch 4/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0529 - accuracy: 0.9826INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0531 - accuracy: 0.9826 - val_loss: 0.0671 - val_accuracy: 0.9791 Epoch 5/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0423 - accuracy: 0.9860INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0424 - accuracy: 0.9860 - val_loss: 0.0772 - val_accuracy: 0.9757 Epoch 6/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0345 - accuracy: 0.9888INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0345 - accuracy: 0.9888 - val_loss: 0.0669 - val_accuracy: 0.9811 Epoch 7/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0314 - accuracy: 0.9895INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0313 - accuracy: 0.9895 - val_loss: 0.0718 - val_accuracy: 0.9800 Epoch 8/10 1870/1875 [============================>.] - ETA: 0s - loss: 0.0298 - accuracy: 0.9899INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0298 - accuracy: 0.9899 - val_loss: 0.0632 - val_accuracy: 0.9825 Epoch 9/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0230 - accuracy: 0.9925INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0231 - accuracy: 0.9924 - val_loss: 0.0748 - val_accuracy: 0.9800 Epoch 10/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0220 - accuracy: 0.9920INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0222 - accuracy: 0.9920 - val_loss: 0.0703 - val_accuracy: 0.9825 <keras.callbacks.History at 0x7f638c204410>
%ls {model_checkpoint_callback.filepath}
assets/ keras_metadata.pb saved_model.pb variables/
Langkah selanjutnya
Pelajari lebih lanjut tentang pos pemeriksaan di:
- Dokumen API:
tf.keras.callbacks.ModelCheckpoint
- Tutorial: Menyimpan dan memuat model (bagian Simpan pos pemeriksaan selama pelatihan )
- Panduan: Simpan dan muat model Keras (bagian format TF Checkpoint )
Pelajari lebih lanjut tentang panggilan balik di:
- Dokumen API:
tf.keras.callbacks.Callback
- Panduan: Menulis panggilan balik Anda sendiri
- Panduan: Pelatihan dan evaluasi dengan metode bawaan (bagian Menggunakan panggilan balik )
Anda mungkin juga menemukan sumber daya terkait migrasi berikut ini berguna:
- Panduan migrasi toleransi kesalahan :
tf.keras.callbacks.BackupAndRestore
untukModel.fit
, atautf.train.Checkpoint
dantf.train.CheckpointManager
API untuk loop pelatihan khusus - Panduan migrasi penghentian awal :
tf.keras.callbacks.EarlyStopping
adalah panggilan balik penghentian awal bawaan - Panduan migrasi TensorBoard : TensorBoard memungkinkan pelacakan dan menampilkan metrik
- Panduan migrasi panggilan balik LoggingTensorHook dan StopAtStepHook ke Keras
- Panduan panggilan balik SessionRunHook ke Keras