Nuovo nell'apprendimento automatico? Guarda un corso video per ottenere una conoscenza pratica del ML utilizzando le tecnologie Web
Visualizza la serie
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Modelli TensorFlow.js
Esplora modelli preaddestrati per aggiungere visione artificiale, elaborazione del linguaggio naturale (NLP) e altre attività ML comuni alle tue applicazioni Web e basate su browser.
Rilevamento facciale semplice Rileva i volti nelle immagini utilizzando un'architettura Single Shot Detector con un codificatore personalizzato (Blazeface).
Rilevamento della posa API di rilevamento delle pose unificata per l'utilizzo di uno dei tre modelli che aiutano a rilevare pose atipiche e movimenti rapidi del corpo con prestazioni in tempo reale.
Rilevamento della posa della mano Rilevatore del palmo e modello di tracciamento del dito dello scheletro della mano. Prevedi 21 punti chiave della mano 3D per mano rilevata.
Codificatore di frasi universale Codifica il testo in incorporamenti per attività NLP come la classificazione del sentiment e la somiglianza testuale (Universal Sentence Encoder).
Classificatore KNN Utilità per creare un classificatore utilizzando l'algoritmo K-Nearest-Neighbors. Può essere utilizzato per il trasferimento dell'apprendimento.
[null,null,[],[],[],null,["# TensorFlow.js models\n====================\n\nExplore pre-trained models to add computer vision, natural language processing (NLP), and other common ML tasks to your web and browser-based applications. \n\nVision\n------\n\nAnalyze features in images and videos. Unlock new real-time experiences in the browser. \n[Image classification](https://github.com/tensorflow/tfjs-models/tree/master/mobilenet) \nClassify images with labels from the ImageNet database (MobileNet). \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/mobilenet) \n[Object detection](https://github.com/tensorflow/tfjs-models/tree/master/coco-ssd) \nLocalize and identify multiple objects in a single image (Coco SSD). \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/coco-ssd) \n[Semantic segmentation](https://github.com/tensorflow/tfjs-models/tree/master/deeplab) \nRun semantic segmentation in the browser (DeepLab). \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/deeplab) \n\nBody\n----\n\nDetect key points and poses on the face, hands, and body with models from [MediaPipe](https://google.github.io/mediapipe/solutions/models) and beyond, optimized for JavaScript and Node.js. \n[Simple face detection](https://github.com/tensorflow/tfjs-models/tree/master/face-detection) \nDetect faces in images using a Single Shot Detector architecture with a custom encoder (Blazeface). \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/face-detection) \n[Face landmark detection](https://github.com/tensorflow/tfjs-models/tree/master/face-landmarks-detection) \nPredict 486 3D facial landmarks to infer the approximate surface geometry of human faces. \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/face-landmarks-detection) \n[Pose detection](https://github.com/tensorflow/tfjs-models/tree/master/pose-detection) \nUnified pose detection API for using one of three models that help detect atypical poses and fast body motions with real time performance. \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/pose-detection) \n[Body segmentation](https://github.com/tensorflow/tfjs-models/tree/master/body-segmentation) \nSegment person(s) and body parts in real-time. \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/body-segmentation) \n[Hand pose detection](https://github.com/tensorflow/tfjs-models/tree/master/hand-pose-detection) \nPalm detector and hand-skeleton finger tracking model. Predict 21 3D hand keypoints per detected hand. \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/hand-pose-detection) \n[Portrait depth estimation](https://github.com/tensorflow/tfjs-models/tree/master/depth-estimation) \nEstimate a depth map for a single portrait image of a human. \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/depth-estimation) \n\nText\n----\n\nEnable NLP in your web app using the power of BERT and other Transformer encoder architectures. \n[Natural language question answering](https://github.com/tensorflow/tfjs-models/tree/master/qna) \nAnswer questions based on the content of a given passage of text using BERT. \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/qna) \n[Text toxicity detection](https://github.com/tensorflow/tfjs-models/tree/master/toxicity) \nScore the perceived impact a comment may have on a conversation, from \"Very toxic\" to \"Very healthy\" (Toxicity). \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/toxicity) \n[Universal sentence encoder](https://github.com/tensorflow/tfjs-models/tree/master/universal-sentence-encoder) \nEncode text into embeddings for NLP tasks such as sentiment classification and textual similarity (Universal Sentence Encoder). \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/universal-sentence-encoder) \n\nAudio\n-----\n\nClassify audio to detect sounds and trigger an action in your web app. \n[Speech command recognition](https://github.com/tensorflow/tfjs-models/tree/master/speech-commands) \nClassify 1-second audio snippets from the speech commands dataset (speech-commands). \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/speech-commands) \n\nGeneral\n-------\n\nFind more TensorFlow.js models that can be used out of the box. \n[KNN Classifier](https://github.com/tensorflow/tfjs-models/tree/master/knn-classifier) \nUtility to create a classifier using the K-Nearest-Neighbors algorithm. Can be used for transfer learning. \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/knn-classifier) \n[Explore on GitHub](https://tfhub.dev/s?deployment-format=tfjs) \n\nGet started with TensorFlow.js\n------------------------------\n\n[Explore tutorials](/js/tutorials)"]]