Recommander des films : récupération à l'aide d'un modèle séquentiel

Voir sur TensorFlow.org Exécuter dans Google Colab Voir la source sur GitHub Télécharger le cahier

Dans ce tutoriel, nous allons construire un modèle de récupération séquentielle. La recommandation séquentielle est un modèle populaire qui examine une séquence d'éléments avec lesquels les utilisateurs ont interagi précédemment, puis prédit l'élément suivant. Ici, l'ordre des éléments dans chaque séquence est important, nous allons donc utiliser un réseau de neurones récurrent pour modéliser la relation séquentielle. Pour plus de détails, s'il vous plaît se référer à ce document GRU4Rec .

Importations

Commençons par éliminer nos dépendances et nos importations.

pip install -q tensorflow-recommenders
pip install -q --upgrade tensorflow-datasets
import os
import pprint
import tempfile

from typing import Dict, Text

import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

Préparation du jeu de données

Ensuite, nous devons préparer notre ensemble de données. Nous allons tirer parti de l' utilitaire de génération de données dans ce tensorflow Lite sur l'appareil application de référence de la Recommandation .

MovieLens 1M données contient ratings.dat (colonnes: UserID, MovieID, Note, timestamp) et movies.dat (colonnes: MovieID, Titre, Genres). L'exemple de script de génération télécharge l'ensemble de données 1M, prend les deux fichiers, ne conserve que les notes supérieures à 2, forme des chronologies d'interaction de film utilisateur, des exemples d'activités comme étiquettes et 10 activités utilisateur précédentes comme contexte de prédiction.

wget -nc https://raw.githubusercontent.com/tensorflow/examples/master/lite/examples/recommendation/ml/data/example_generation_movielens.py
python -m example_generation_movielens  --data_dir=data/raw  --output_dir=data/examples  --min_timeline_length=3  --max_context_length=10  --max_context_movie_genre_length=10  --min_rating=2  --train_data_fraction=0.9  --build_vocabs=False
--2021-12-02 12:10:29--  https://raw.githubusercontent.com/tensorflow/examples/master/lite/examples/recommendation/ml/data/example_generation_movielens.py
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.110.133, 185.199.111.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 18040 (18K) [text/plain]
Saving to: ‘example_generation_movielens.py’

example_generation_ 100%[===================>]  17.62K  --.-KB/s    in 0s      

2021-12-02 12:10:29 (107 MB/s) - ‘example_generation_movielens.py’ saved [18040/18040]

I1202 12:10:32.036267 140629273970496 example_generation_movielens.py:460] Downloading and extracting data.
Downloading data from http://files.grouplens.org/datasets/movielens/ml-1m.zip
5922816/5917549 [==============================] - 1s 0us/step
5931008/5917549 [==============================] - 1s 0us/step
I1202 12:10:33.549675 140629273970496 example_generation_movielens.py:406] Reading data to dataframes.
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/pandas/util/_decorators.py:311: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.
  return func(*args, **kwargs)
I1202 12:10:37.734699 140629273970496 example_generation_movielens.py:408] Generating movie rating user timelines.
I1202 12:10:40.836473 140629273970496 example_generation_movielens.py:410] Generating train and test examples.
6040/6040 [==============================] - 76s 13ms/step
I1202 12:11:57.162662 140629273970496 example_generation_movielens.py:421] Writing generated training examples.
844195/844195 [==============================] - 14s 17us/step
I1202 12:12:11.266682 140629273970496 example_generation_movielens.py:424] Writing generated testing examples.
93799/93799 [==============================] - 2s 17us/step
I1202 12:12:22.758407 140629273970496 example_generation_movielens.py:473] Generated dataset: {'train_size': 844195, 'test_size': 93799, 'train_file': 'data/examples/train_movielens_1m.tfrecord', 'test_file': 'data/examples/test_movielens_1m.tfrecord'}

Voici un exemple du jeu de données généré.

0 : {
  features: {
    feature: {
      key  : "context_movie_id"
      value: { int64_list: { value: [ 1124, 2240, 3251, ..., 1268 ] } }
    }
    feature: {
      key  : "context_movie_rating"
      value: { float_list: {value: [ 3.0, 3.0, 4.0, ..., 3.0 ] } }
    }
    feature: {
      key  : "context_movie_year"
      value: { int64_list: { value: [ 1981, 1980, 1985, ..., 1990 ] } }
    }
    feature: {
      key  : "context_movie_genre"
      value: { bytes_list: { value: [ "Drama", "Drama", "Mystery", ..., "UNK" ] } }
    }
    feature: {
      key  : "label_movie_id"
      value: { int64_list: { value: [ 3252 ] }  }
    }
  }
}

Vous pouvez voir qu'il comprend une séquence d'ID de film contextuel et un ID de film d'étiquette (film suivant), ainsi que des fonctionnalités contextuelles telles que l'année, la classification et le genre du film.

Dans notre cas, nous n'utiliserons que la séquence d'ID de film de contexte et l'ID de film d'étiquette. Vous pouvez vous référer au contexte de levier financier propose tutoriel pour en savoir plus sur l' ajout de fonctionnalités de contexte supplémentaires.

train_filename = "./data/examples/train_movielens_1m.tfrecord"
train = tf.data.TFRecordDataset(train_filename)

test_filename = "./data/examples/test_movielens_1m.tfrecord"
test = tf.data.TFRecordDataset(test_filename)

feature_description = {
    'context_movie_id': tf.io.FixedLenFeature([10], tf.int64, default_value=np.repeat(0, 10)),
    'context_movie_rating': tf.io.FixedLenFeature([10], tf.float32, default_value=np.repeat(0, 10)),
    'context_movie_year': tf.io.FixedLenFeature([10], tf.int64, default_value=np.repeat(1980, 10)),
    'context_movie_genre': tf.io.FixedLenFeature([10], tf.string, default_value=np.repeat("Drama", 10)),
    'label_movie_id': tf.io.FixedLenFeature([1], tf.int64, default_value=0),
}

def _parse_function(example_proto):
  return tf.io.parse_single_example(example_proto, feature_description)

train_ds = train.map(_parse_function).map(lambda x: {
    "context_movie_id": tf.strings.as_string(x["context_movie_id"]),
    "label_movie_id": tf.strings.as_string(x["label_movie_id"])
})

test_ds = test.map(_parse_function).map(lambda x: {
    "context_movie_id": tf.strings.as_string(x["context_movie_id"]),
    "label_movie_id": tf.strings.as_string(x["label_movie_id"])
})

for x in train_ds.take(1).as_numpy_iterator():
  pprint.pprint(x)
{'context_movie_id': array([b'2589', b'202', b'1038', b'1767', b'951', b'129', b'1256', b'955',
       b'3097', b'3462'], dtype=object),
 'label_movie_id': array([b'3629'], dtype=object)}

Désormais, nos ensembles de données d'entraînement/test incluent uniquement une séquence d'identifiants de films historiques et une étiquette du prochain identifiant de film. Notez que nous utilisons [10] que la forme des fonctions lors de l' analyse tf.Example parce que nous 10 préciser que la longueur du contexte figure dans l'exemple étape de generateion.

Nous avons besoin d'une autre chose avant de pouvoir commencer à construire le modèle - le vocabulaire pour nos identifiants de film.

movies = tfds.load("movielens/1m-movies", split='train')
movies = movies.map(lambda x: x["movie_id"])
movie_ids = movies.batch(1_000)
unique_movie_ids = np.unique(np.concatenate(list(movie_ids)))

Implémentation d'un modèle séquentiel

Dans notre tutoriel de recherche de base , nous utilisons une tour de requête pour l'utilisateur et le câble candidat pour le film candidat. Cependant, l'architecture à deux tours est généralisable et ne se limite pas à paire. Vous pouvez également l' utiliser pour faire recommandation point à point que nous notons dans le tutoriel de récupération de base .

Ici, nous allons toujours utiliser l'architecture à deux tours. Specificially, nous utilisons la tour de requête avec une couche unité récurrente Gated (GRU) pour coder la séquence des films historiques, et garder le même tour candidat pour le film candidat.

embedding_dimension = 32

query_model = tf.keras.Sequential([
    tf.keras.layers.StringLookup(
      vocabulary=unique_movie_ids, mask_token=None),
    tf.keras.layers.Embedding(len(unique_movie_ids) + 1, embedding_dimension), 
    tf.keras.layers.GRU(embedding_dimension),
])

candidate_model = tf.keras.Sequential([
  tf.keras.layers.StringLookup(
      vocabulary=unique_movie_ids, mask_token=None),
  tf.keras.layers.Embedding(len(unique_movie_ids) + 1, embedding_dimension)
])

Les métriques, la tâche et le modèle complet sont définis de manière similaire au modèle de récupération de base.

metrics = tfrs.metrics.FactorizedTopK(
  candidates=movies.batch(128).map(candidate_model)
)

task = tfrs.tasks.Retrieval(
  metrics=metrics
)

class Model(tfrs.Model):

    def __init__(self, query_model, candidate_model):
        super().__init__()
        self._query_model = query_model
        self._candidate_model = candidate_model

        self._task = task

    def compute_loss(self, features, training=False):
        watch_history = features["context_movie_id"]
        watch_next_label = features["label_movie_id"]

        query_embedding = self._query_model(watch_history)       
        candidate_embedding = self._candidate_model(watch_next_label)

        return self._task(query_embedding, candidate_embedding, compute_metrics=not training)

Ajustement et évaluation

Nous pouvons maintenant compiler, entraîner et évaluer notre modèle de récupération séquentielle.

model = Model(query_model, candidate_model)
model.compile(optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.1))
cached_train = train_ds.shuffle(10_000).batch(12800).cache()
cached_test = test_ds.batch(2560).cache()
model.fit(cached_train, epochs=3)
Epoch 1/3
67/67 [==============================] - 25s 291ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_5_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_10_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_50_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_100_categorical_accuracy: 0.0000e+00 - loss: 107448.4467 - regularization_loss: 0.0000e+00 - total_loss: 107448.4467
Epoch 2/3
67/67 [==============================] - 2s 25ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_5_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_10_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_50_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_100_categorical_accuracy: 0.0000e+00 - loss: 100932.0125 - regularization_loss: 0.0000e+00 - total_loss: 100932.0125
Epoch 3/3
67/67 [==============================] - 2s 25ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_5_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_10_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_50_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_100_categorical_accuracy: 0.0000e+00 - loss: 99336.2015 - regularization_loss: 0.0000e+00 - total_loss: 99336.2015
<keras.callbacks.History at 0x7f0904d5b410>
model.evaluate(cached_test, return_dict=True)
37/37 [==============================] - 10s 235ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0146 - factorized_top_k/top_5_categorical_accuracy: 0.0780 - factorized_top_k/top_10_categorical_accuracy: 0.1358 - factorized_top_k/top_50_categorical_accuracy: 0.3735 - factorized_top_k/top_100_categorical_accuracy: 0.5058 - loss: 15478.0652 - regularization_loss: 0.0000e+00 - total_loss: 15478.0652
{'factorized_top_k/top_1_categorical_accuracy': 0.014605699107050896,
 'factorized_top_k/top_5_categorical_accuracy': 0.07804987579584122,
 'factorized_top_k/top_10_categorical_accuracy': 0.1358330100774765,
 'factorized_top_k/top_50_categorical_accuracy': 0.3735221028327942,
 'factorized_top_k/top_100_categorical_accuracy': 0.5058262944221497,
 'loss': 9413.1240234375,
 'regularization_loss': 0,
 'total_loss': 9413.1240234375}

Ceci conclut le didacticiel de récupération séquentielle.