适用于非 TFX 用户的 Transform 库
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
Transform 可以作为独立的库使用。
tft
模块文档是唯一与 TFX 用户有关的模块。tft_beam
模块仅在将 Transform 作为独立库使用时才相关。通常情况下,TFX 用户会构造一个 preprocessing_fn
,其余的 Transform 库调用则由 Transform 组件完成。
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2022-01-24。
[null,null,["最后更新时间 (UTC):2022-01-24。"],[],[],null,["# Transform library for non-TFX users\n\n\u003cbr /\u003e\n\nTransform is available as a standalone library.\n\n- [Getting Started with TensorFlow Transform](https://www.tensorflow.org/tfx/transform/get_started)\n- [TensorFlow Transform API Reference](https://www.tensorflow.org/tfx/transform/api_docs/python/tft)\n\nThe [`tft`](https://www.tensorflow.org/tfx/transform/api_docs/python/tft) module documentation is the only module that is relevant to TFX users.\nThe [`tft_beam`](https://www.tensorflow.org/tfx/transform/api_docs/python/tft_beam) module is relevant only when using Transform as a standalone library. Typically, a TFX user constructs a `preprocessing_fn`, and the rest of the\nTransform library calls are made by the Transform component.\n\nYou can also use the Apache Beam `MLTransform` class to preprocess data\nfor training and inference. The `MLTransform` class wraps multiple TFX data\nprocessing transforms in one class. For more information, see\n[Preprocess data with MLTransform](https://beam.apache.org/documentation/ml/preprocess-data)\nin the Apache Beam documentation."]]