Esta guía forma a un modelo de red neuronal para clasificar imágenes de prendas de vestir, como camisas y zapatillas de deporte , guarda el modelo entrenado, y luego se sirve con TensorFlow Servir . La atención se centra en TensorFlow Servir, en lugar de la modelización y la formación en TensorFlow, por lo que para un ejemplo completo que se centra en el modelado y la formación ver el ejemplo básico de clasificación .
Esta guía utiliza tf.keras , una API de alto nivel para los modelos de construcción y de tren en TensorFlow.
import sys
# Confirm that we're using Python 3
assert sys.version_info.major == 3, 'Oops, not running Python 3. Use Runtime > Change runtime type'
# TensorFlow and tf.keras
print("Installing dependencies for Colab environment")
!pip install -Uq grpcio==1.26.0
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import os
import subprocess
print('TensorFlow version: {}'.format(tf.__version__))
Crea tu modelo
Importar el conjunto de datos Fashion MNIST
Esta guía utiliza la moda MNIST conjunto de datos que contiene 70.000 imágenes en escala de grises en 10 categorías. Las imágenes muestran prendas de vestir individuales a baja resolución (28 por 28 píxeles), como se ve aquí:
Figura 1. Las muestras de la manera-MNIST (por Zalando, Licencia MIT). |
Moda MNIST pretende ser una gota en el reemplazo para el clásico MNIST utilizado conjunto de datos-a menudo como el "Hola, mundo" de los programas de aprendizaje automático para la visión por ordenador. Puede acceder a Fashion MNIST directamente desde TensorFlow, solo importe y cargue los datos.
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
# scale the values to 0.0 to 1.0
train_images = train_images / 255.0
test_images = test_images / 255.0
# reshape for feeding into the model
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
print('\ntrain_images.shape: {}, of {}'.format(train_images.shape, train_images.dtype))
print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz 32768/29515 [=================================] - 0s 0us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz 26427392/26421880 [==============================] - 0s 0us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz 8192/5148 [===============================================] - 0s 0us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz 4423680/4422102 [==============================] - 0s 0us/step train_images.shape: (60000, 28, 28, 1), of float64 test_images.shape: (10000, 28, 28, 1), of float64
Entrena y evalúa tu modelo
Usemos la CNN más simple posible, ya que no estamos enfocados en la parte del modelado.
model = keras.Sequential([
keras.layers.Conv2D(input_shape=(28,28,1), filters=8, kernel_size=3,
strides=2, activation='relu', name='Conv1'),
keras.layers.Flatten(),
keras.layers.Dense(10, name='Dense')
])
model.summary()
testing = False
epochs = 5
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(train_images, train_labels, epochs=epochs)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('\nTest accuracy: {}'.format(test_acc))
2021-12-04 10:29:34.128871: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:29:34.129907: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= Conv1 (Conv2D) (None, 13, 13, 8) 80 _________________________________________________________________ flatten (Flatten) (None, 1352) 0 _________________________________________________________________ Dense (Dense) (None, 10) 13530 ================================================================= Total params: 13,610 Trainable params: 13,610 Non-trainable params: 0 _________________________________________________________________ Epoch 1/5 1875/1875 [==============================] - 4s 2ms/step - loss: 0.7204 - sparse_categorical_accuracy: 0.7549 Epoch 2/5 1875/1875 [==============================] - 4s 2ms/step - loss: 0.3997 - sparse_categorical_accuracy: 0.8611 Epoch 3/5 1875/1875 [==============================] - 4s 2ms/step - loss: 0.3580 - sparse_categorical_accuracy: 0.8754 Epoch 4/5 1875/1875 [==============================] - 4s 2ms/step - loss: 0.3399 - sparse_categorical_accuracy: 0.8780 Epoch 5/5 1875/1875 [==============================] - 4s 2ms/step - loss: 0.3232 - sparse_categorical_accuracy: 0.8849 313/313 [==============================] - 0s 1ms/step - loss: 0.3586 - sparse_categorical_accuracy: 0.8738 Test accuracy: 0.8737999796867371
Guarda tu modelo
Para cargar nuestro modelo entrenado en TensorFlow servir en primer lugar hay que guardarla en SavedModel formato. Esto creará un archivo protobuf en una jerarquía de directorios bien definida e incluirá un número de versión. TensorFlow Porción nos permite seleccionar qué versión de un modelo, o "servable" queremos usar cuando hacemos peticiones de inferencia. Cada versión se exportará a un subdirectorio diferente en la ruta indicada.
# Fetch the Keras session and save the model
# The signature definition is defined by the input and output tensors,
# and stored with the default serving key
import tempfile
MODEL_DIR = tempfile.gettempdir()
version = 1
export_path = os.path.join(MODEL_DIR, str(version))
print('export_path = {}\n'.format(export_path))
tf.keras.models.save_model(
model,
export_path,
overwrite=True,
include_optimizer=True,
save_format=None,
signatures=None,
options=None
)
print('\nSaved model:')
!ls -l {export_path}
export_path = /tmp/1 2021-12-04 10:29:53.392905: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. INFO:tensorflow:Assets written to: /tmp/1/assets Saved model: total 88 drwxr-xr-x 2 kbuilder kbuilder 4096 Dec 4 10:29 assets -rw-rw-r-- 1 kbuilder kbuilder 78055 Dec 4 10:29 saved_model.pb drwxr-xr-x 2 kbuilder kbuilder 4096 Dec 4 10:29 variables
Examina tu modelo guardado
Vamos a utilizar la utilidad de línea de comandos saved_model_cli
mirar las MetaGraphDefs (los modelos) y SignatureDefs (los métodos que se pueden llamar) en nuestra SavedModel. Ver esta discusión de la SavedModel CLI en la Guía TensorFlow.
saved_model_cli show --dir {export_path} --all
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: signature_def['__saved_model_init_op']: The given SavedModel SignatureDef contains the following input(s): The given SavedModel SignatureDef contains the following output(s): outputs['__saved_model_init_op'] tensor_info: dtype: DT_INVALID shape: unknown_rank name: NoOp Method name is: signature_def['serving_default']: The given SavedModel SignatureDef contains the following input(s): inputs['Conv1_input'] tensor_info: dtype: DT_FLOAT shape: (-1, 28, 28, 1) name: serving_default_Conv1_input:0 The given SavedModel SignatureDef contains the following output(s): outputs['Dense'] tensor_info: dtype: DT_FLOAT shape: (-1, 10) name: StatefulPartitionedCall:0 Method name is: tensorflow/serving/predict Defined Functions: Function Name: '__call__' Option #1 Callable with: Argument #1 Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input') Argument #2 DType: bool Value: False Argument #3 DType: NoneType Value: None Option #2 Callable with: Argument #1 inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs') Argument #2 DType: bool Value: False Argument #3 DType: NoneType Value: None Option #3 Callable with: Argument #1 inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs') Argument #2 DType: bool Value: True Argument #3 DType: NoneType Value: None Option #4 Callable with: Argument #1 Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input') Argument #2 DType: bool Value: True Argument #3 DType: NoneType Value: None Function Name: '_default_save_signature' Option #1 Callable with: Argument #1 Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input') Function Name: 'call_and_return_all_conditional_losses' Option #1 Callable with: Argument #1 inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs') Argument #2 DType: bool Value: False Argument #3 DType: NoneType Value: None Option #2 Callable with: Argument #1 Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input') Argument #2 DType: bool Value: True Argument #3 DType: NoneType Value: None Option #3 Callable with: Argument #1 Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input') Argument #2 DType: bool Value: False Argument #3 DType: NoneType Value: None Option #4 Callable with: Argument #1 inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs') Argument #2 DType: bool Value: True Argument #3 DType: NoneType Value: None
¡Eso nos dice mucho sobre nuestro modelo! En este caso, acabamos de entrenar nuestro modelo, por lo que ya conocemos las entradas y salidas, pero si no lo hiciéramos, esta sería información importante. No nos dice todo, como el hecho de que se trata de datos de imagen en escala de grises, por ejemplo, pero es un gran comienzo.
Sirva su modelo con TensorFlow Serving
Agrega el URI de distribución de TensorFlow Serving como fuente del paquete:
Nos estamos preparando para instalar TensorFlow Sirviendo usando Aptitud ya que este Colab ejecuta en un entorno de Debian. Vamos a añadir el tensorflow-model-server
paquete a la lista de paquetes que Aptitud conoce. Tenga en cuenta que estamos ejecutando como root.
import sys
# We need sudo prefix if not on a Google Colab.
if 'google.colab' not in sys.modules:
SUDO_IF_NEEDED = 'sudo'
else:
SUDO_IF_NEEDED = ''
# This is the same as you would do from your command line, but without the [arch=amd64], and no sudo
# You would instead do:
# echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && \
# curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -
!echo "deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | {SUDO_IF_NEEDED} tee /etc/apt/sources.list.d/tensorflow-serving.list && \
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | {SUDO_IF_NEEDED} apt-key add -
!{SUDO_IF_NEEDED} apt update
deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 2943 100 2943 0 0 15571 0 --:--:-- --:--:-- --:--:-- 15571 OK Hit:1 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic InRelease Hit:2 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates InRelease Hit:3 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-backports InRelease Hit:4 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 InRelease Get:5 https://nvidia.github.io/nvidia-container-runtime/ubuntu18.04/amd64 InRelease [1481 B] Get:6 https://nvidia.github.io/nvidia-docker/ubuntu18.04/amd64 InRelease [1474 B] Ign:7 http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64 InRelease Get:8 http://storage.googleapis.com/tensorflow-serving-apt stable InRelease [3012 B] Hit:9 http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64 Release Get:10 http://security.ubuntu.com/ubuntu bionic-security InRelease [88.7 kB] Get:11 https://packages.cloud.google.com/apt eip-cloud-bionic InRelease [5419 B] Get:12 http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease [5483 B] Hit:13 http://archive.canonical.com/ubuntu bionic InRelease Err:11 https://packages.cloud.google.com/apt eip-cloud-bionic InRelease The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB Get:15 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 Packages [339 B] Err:12 http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB Get:16 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server-universal amd64 Packages [348 B] Fetched 106 kB in 1s (103 kB/s) 119 packages can be upgraded. Run 'apt list --upgradable' to see them. W: An error occurred during the signature verification. The repository is not updated and the previous index files will be used. GPG error: https://packages.cloud.google.com/apt eip-cloud-bionic InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB W: An error occurred during the signature verification. The repository is not updated and the previous index files will be used. GPG error: http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB W: Failed to fetch https://packages.cloud.google.com/apt/dists/eip-cloud-bionic/InRelease The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB W: Failed to fetch http://packages.cloud.google.com/apt/dists/google-cloud-logging-wheezy/InRelease The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB W: Some index files failed to download. They have been ignored, or old ones used instead.
Instalar publicación de TensorFlow
Esto es todo lo que necesita: ¡una línea de comando!
{SUDO_IF_NEEDED} apt-get install tensorflow-model-server
The following packages were automatically installed and are no longer required: linux-gcp-5.4-headers-5.4.0-1040 linux-gcp-5.4-headers-5.4.0-1043 linux-gcp-5.4-headers-5.4.0-1044 linux-gcp-5.4-headers-5.4.0-1049 Use 'sudo apt autoremove' to remove them. The following NEW packages will be installed: tensorflow-model-server 0 upgraded, 1 newly installed, 0 to remove and 119 not upgraded. Need to get 335 MB of archives. After this operation, 0 B of additional disk space will be used. Get:1 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 tensorflow-model-server all 2.7.0 [335 MB] Fetched 335 MB in 7s (45.2 MB/s) Selecting previously unselected package tensorflow-model-server. (Reading database ... 264341 files and directories currently installed.) Preparing to unpack .../tensorflow-model-server_2.7.0_all.deb ... Unpacking tensorflow-model-server (2.7.0) ... Setting up tensorflow-model-server (2.7.0) ...
Comience a ejecutar TensorFlow Serving
Aquí es donde comenzamos a ejecutar TensorFlow Serving y cargamos nuestro modelo. Después de que se cargue, podemos comenzar a realizar solicitudes de inferencia usando REST. Hay algunos parámetros importantes:
-
rest_api_port
: El puerto que va a utilizar para las solicitudes REST. -
model_name
: Vamos a usar esto en la URL de solicitudes REST. Puede ser cualquier cosa. -
model_base_path
: Esta es la ruta de acceso al directorio en el que ha guardado su modelo.
os.environ["MODEL_DIR"] = MODEL_DIR
nohup tensorflow_model_server \
--rest_api_port=8501 \
--model_name=fashion_model \
--model_base_path="${MODEL_DIR}" >server.log 2>&1
tail server.log
Realice una solicitud a su modelo en TensorFlow Serving
Primero, echemos un vistazo a un ejemplo aleatorio de nuestros datos de prueba.
def show(idx, title):
plt.figure()
plt.imshow(test_images[idx].reshape(28,28))
plt.axis('off')
plt.title('\n\n{}'.format(title), fontdict={'size': 16})
import random
rando = random.randint(0,len(test_images)-1)
show(rando, 'An Example Image: {}'.format(class_names[test_labels[rando]]))
Ok, eso parece interesante. ¿Qué tan difícil es para usted reconocerlo? Ahora creemos el objeto JSON para un lote de tres solicitudes de inferencia y veamos qué tan bien reconoce nuestro modelo las cosas:
import json
data = json.dumps({"signature_name": "serving_default", "instances": test_images[0:3].tolist()})
print('Data: {} ... {}'.format(data[:50], data[len(data)-52:]))
Data: {"signature_name": "serving_default", "instances": ... [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]]]}
Realizar solicitudes de REST
Versión más nueva del servidor
Enviaremos una solicitud de predicción como POST al punto final REST de nuestro servidor y le pasaremos tres ejemplos. Le pediremos a nuestro servidor que nos dé la última versión de nuestro servidor sin especificar una versión en particular.
# docs_infra: no_execute
!pip install -q requests
import requests
headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']
show(0, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
class_names[np.argmax(predictions[0])], np.argmax(predictions[0]), class_names[test_labels[0]], test_labels[0]))
Una versión particular del servidor
Ahora especifiquemos una versión particular de nuestro servidor. Como solo tenemos uno, seleccionemos la versión 1. También veremos los tres resultados.
# docs_infra: no_execute
headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model/versions/1:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']
for i in range(0,3):
show(i, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
class_names[np.argmax(predictions[i])], np.argmax(predictions[i]), class_names[test_labels[i]], test_labels[i]))