Autisti

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza la fonte su GitHub Scarica taccuino

introduzione

Un modello comune nell'apprendimento per rinforzo consiste nell'eseguire una politica in un ambiente per un numero specificato di passaggi o episodi. Ciò accade, ad esempio, durante la raccolta dei dati, la valutazione e la generazione di un video dell'agente.

Anche se questo è relativamente semplice di scrivere in python, è molto più complessa di scrivere ed eseguire il debug in tensorflow perché coinvolge tf.while loop, tf.cond e tf.control_dependencies . Perciò abbiamo estratto questo concetto di un ciclo corsa in una classe chiamata driver , e fornire implementazioni collaudate sia in Python e tensorflow.

Inoltre, i dati incontrati dal driver ad ogni passaggio vengono salvati in una tupla denominata Trajectory e trasmessi a un insieme di osservatori come replay buffer e metriche. Questi dati includono l'osservazione dall'ambiente, l'azione raccomandata dalla politica, la ricompensa ottenuta, il tipo di corrente e il passo successivo, ecc.

Impostare

Se non hai ancora installato tf-agent o gym, esegui:

pip install tf-agents
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf


from tf_agents.environments import suite_gym
from tf_agents.environments import tf_py_environment
from tf_agents.policies import random_py_policy
from tf_agents.policies import random_tf_policy
from tf_agents.metrics import py_metrics
from tf_agents.metrics import tf_metrics
from tf_agents.drivers import py_driver
from tf_agents.drivers import dynamic_episode_driver

Driver Python

Il PyDriver classe prende un ambiente di pitone, una politica di pitone e l'elenco degli osservatori per l'aggiornamento ad ogni passo. Il metodo principale è run() , che passi l'ambiente utilizzando le azioni della politica fino a quando almeno uno dei seguenti criteri di terminazione è soddisfatta: il numero di passaggi raggiunge max_steps o il numero di episodi raggiunge max_episodes .

L'implementazione è approssimativamente la seguente:

class PyDriver(object):

  def __init__(self, env, policy, observers, max_steps=1, max_episodes=1):
    self._env = env
    self._policy = policy
    self._observers = observers or []
    self._max_steps = max_steps or np.inf
    self._max_episodes = max_episodes or np.inf

  def run(self, time_step, policy_state=()):
    num_steps = 0
    num_episodes = 0
    while num_steps < self._max_steps and num_episodes < self._max_episodes:

      # Compute an action using the policy for the given time_step
      action_step = self._policy.action(time_step, policy_state)

      # Apply the action to the environment and get the next step
      next_time_step = self._env.step(action_step.action)

      # Package information into a trajectory
      traj = trajectory.Trajectory(
         time_step.step_type,
         time_step.observation,
         action_step.action,
         action_step.info,
         next_time_step.step_type,
         next_time_step.reward,
         next_time_step.discount)

      for observer in self._observers:
        observer(traj)

      # Update statistics to check termination
      num_episodes += np.sum(traj.is_last())
      num_steps += np.sum(~traj.is_boundary())

      time_step = next_time_step
      policy_state = action_step.state

    return time_step, policy_state

Ora, esaminiamo l'esempio dell'esecuzione di una politica casuale nell'ambiente CartPole, salvando i risultati in un buffer di riproduzione e calcolando alcune metriche.

env = suite_gym.load('CartPole-v0')
policy = random_py_policy.RandomPyPolicy(time_step_spec=env.time_step_spec(), 
                                         action_spec=env.action_spec())
replay_buffer = []
metric = py_metrics.AverageReturnMetric()
observers = [replay_buffer.append, metric]
driver = py_driver.PyDriver(
    env, policy, observers, max_steps=20, max_episodes=1)

initial_time_step = env.reset()
final_time_step, _ = driver.run(initial_time_step)

print('Replay Buffer:')
for traj in replay_buffer:
  print(traj)

print('Average Return: ', metric.result())
Replay Buffer:
Trajectory(
{'action': array(1),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([-0.01483762, -0.0301547 , -0.02482025,  0.00477367], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(0, dtype=int32)})
Trajectory(
{'action': array(1),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([-0.01544072,  0.16531426, -0.02472478, -0.29563585], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(1),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([-0.01213443,  0.3607798 , -0.0306375 , -0.5960129 ], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(1),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([-0.00491884,  0.5563168 , -0.04255775, -0.8981868 ], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(0),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([ 0.0062075 ,  0.75198895, -0.06052149, -1.2039375 ], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(0),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([ 0.02124728,  0.5576993 , -0.08460024, -0.9308191 ], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(0),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([ 0.03240127,  0.36381477, -0.10321662, -0.6658752 ], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(1),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([ 0.03967756,  0.17026839, -0.11653412, -0.40739253], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(0),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([ 0.04308293,  0.36683324, -0.12468197, -0.7344236 ], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(0),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([ 0.0504196 ,  0.17363413, -0.13937044, -0.48343614], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(1),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([ 0.05389228, -0.0192741 , -0.14903916, -0.23772195], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(1),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([ 0.0535068 ,  0.17762792, -0.1537936 , -0.5734562 ], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(0),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([ 0.05705936,  0.37453365, -0.16526273, -0.910366  ], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(0),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([ 0.06455003,  0.18198717, -0.18347006, -0.6738478 ], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(0),
 'discount': array(1., dtype=float32),
 'next_step_type': array(1, dtype=int32),
 'observation': array([ 0.06818977, -0.01017502, -0.19694701, -0.44408032], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(0),
 'discount': array(0., dtype=float32),
 'next_step_type': array(2, dtype=int32),
 'observation': array([ 0.06798627, -0.20204504, -0.20582862, -0.21936782], dtype=float32),
 'policy_info': (),
 'reward': array(1., dtype=float32),
 'step_type': array(1, dtype=int32)})
Trajectory(
{'action': array(1),
 'discount': array(1., dtype=float32),
 'next_step_type': array(0, dtype=int32),
 'observation': array([ 0.06394537, -0.39372152, -0.21021597,  0.00199082], dtype=float32),
 'policy_info': (),
 'reward': array(0., dtype=float32),
 'step_type': array(2, dtype=int32)})
Average Return:  16.0

Driver TensorFlow

Abbiamo anche i driver in tensorflow che sono funzionalmente simili ai driver Python, ma ambienti Usa TF, politiche TF, osservatori TF ecc Al momento disporre di driver 2 tensorflow: DynamicStepDriver , che termina dopo un certo numero di passi (valido) ambiente e DynamicEpisodeDriver , che termina dopo un determinato numero di episodi. Vediamo un esempio di DynamicEpisode in azione.

env = suite_gym.load('CartPole-v0')
tf_env = tf_py_environment.TFPyEnvironment(env)

tf_policy = random_tf_policy.RandomTFPolicy(action_spec=tf_env.action_spec(),
                                            time_step_spec=tf_env.time_step_spec())


num_episodes = tf_metrics.NumberOfEpisodes()
env_steps = tf_metrics.EnvironmentSteps()
observers = [num_episodes, env_steps]
driver = dynamic_episode_driver.DynamicEpisodeDriver(
    tf_env, tf_policy, observers, num_episodes=2)

# Initial driver.run will reset the environment and initialize the policy.
final_time_step, policy_state = driver.run()

print('final_time_step', final_time_step)
print('Number of Steps: ', env_steps.result().numpy())
print('Number of Episodes: ', num_episodes.result().numpy())
final_time_step TimeStep(
{'discount': <tf.Tensor: shape=(1,), dtype=float32, numpy=array([1.], dtype=float32)>,
 'observation': <tf.Tensor: shape=(1, 4), dtype=float32, numpy=array([[0.01182632, 0.01372784, 0.03056967, 0.04454206]], dtype=float32)>,
 'reward': <tf.Tensor: shape=(1,), dtype=float32, numpy=array([0.], dtype=float32)>,
 'step_type': <tf.Tensor: shape=(1,), dtype=int32, numpy=array([0], dtype=int32)>})
Number of Steps:  24
Number of Episodes:  2
# Continue running from previous state
final_time_step, _ = driver.run(final_time_step, policy_state)

print('final_time_step', final_time_step)
print('Number of Steps: ', env_steps.result().numpy())
print('Number of Episodes: ', num_episodes.result().numpy())
final_time_step TimeStep(
{'discount': <tf.Tensor: shape=(1,), dtype=float32, numpy=array([1.], dtype=float32)>,
 'observation': <tf.Tensor: shape=(1, 4), dtype=float32, numpy=
array([[-0.02565088,  0.04813434, -0.04199163,  0.03810809]],
      dtype=float32)>,
 'reward': <tf.Tensor: shape=(1,), dtype=float32, numpy=array([0.], dtype=float32)>,
 'step_type': <tf.Tensor: shape=(1,), dtype=int32, numpy=array([0], dtype=int32)>})
Number of Steps:  70
Number of Episodes:  4