nsl.configs.DecayConfig
Stay organized with collections
Save and categorize content based on your preferences.
Contains configuration for decaying a value during training.
nsl.configs.DecayConfig(
decay_steps,
decay_rate=attr_dict['decay_rate'].default,
min_value=attr_dict['min_value'].default,
decay_type=nsl.configs.DecayType.EXPONENTIAL_DECAY
)
Attributes |
decay_steps
|
A scalar int32 or int64 Tensor or a Python number that
specifies the decay frequency, specied in units of training steps. Must be
positive.
|
decay_rate
|
A scalar float32 or float64 Tensor or a Python number.
Defaults to 0.96.
|
min_value
|
minimal acceptable value after applying decay. Defaults to 0.0.
|
decay_type
|
Type of decay function to apply. Defaults to
nsl.configs.DecayType.EXPONENTIAL_DECAY .
|
Methods
__eq__
__eq__(
other
)
Method generated by attrs for class DecayConfig.
__ge__
__ge__(
other
)
Method generated by attrs for class DecayConfig.
__gt__
__gt__(
other
)
Method generated by attrs for class DecayConfig.
__le__
__le__(
other
)
Method generated by attrs for class DecayConfig.
__lt__
__lt__(
other
)
Method generated by attrs for class DecayConfig.
__ne__
__ne__(
other
)
Method generated by attrs for class DecayConfig.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-08-12 UTC.
[null,null,["Last updated 2022-08-12 UTC."],[],[],null,["# nsl.configs.DecayConfig\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/neural-structured-learning/blob/v1.4.0/neural_structured_learning/configs/configs.py#L232-L249) |\n\nContains configuration for decaying a value during training. \n\n nsl.configs.DecayConfig(\n decay_steps,\n decay_rate=attr_dict['decay_rate'].default,\n min_value=attr_dict['min_value'].default,\n decay_type=../../nsl/configs/DecayType#EXPONENTIAL_DECAY\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|\n| `decay_steps` | A scalar `int32` or `int64` Tensor or a Python number that specifies the decay frequency, specied in units of training steps. Must be positive. |\n| `decay_rate` | A scalar `float32` or `float64` Tensor or a Python number. Defaults to 0.96. |\n| `min_value` | minimal acceptable value after applying decay. Defaults to 0.0. |\n| `decay_type` | Type of decay function to apply. Defaults to [`nsl.configs.DecayType.EXPONENTIAL_DECAY`](../../nsl/configs/DecayType#EXPONENTIAL_DECAY). |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `__eq__`\n\n __eq__(\n other\n )\n\nMethod generated by attrs for class DecayConfig.\n\n### `__ge__`\n\n __ge__(\n other\n )\n\nMethod generated by attrs for class DecayConfig.\n\n### `__gt__`\n\n __gt__(\n other\n )\n\nMethod generated by attrs for class DecayConfig.\n\n### `__le__`\n\n __le__(\n other\n )\n\nMethod generated by attrs for class DecayConfig.\n\n### `__lt__`\n\n __lt__(\n other\n )\n\nMethod generated by attrs for class DecayConfig.\n\n### `__ne__`\n\n __ne__(\n other\n )\n\nMethod generated by attrs for class DecayConfig."]]