|  View source on GitHub | 
Returns a decayed value of init_value over time.
nsl.lib.decay_over_time(
    global_step, decay_config, init_value=1.0
)
When training a model with a regularizer, the objective function can be formulated as the following:
\[objective = \lambda_1 * loss + \lambda_2 * regularization\]
This function can be used for three cases:
- Incrementally diminishing the importance of the loss term, by applying a
decay function to the \(\lambda_1\) over time. We'll denote this by writing
\(\lambda_1\) = decay_over_time(init_value).
- Incrementally increasing the importance of the regularization term, by
setting \(\lambda_2\) = init_value- decay_over_time(init_value).
- Combining the above two cases, namely, setting \(\lambda_1\) =
decay_over_time(init_value) and \(\lambda_2\) =init_value- decay_over_time(init_value).
This function requires a global_step value to compute the decayed value.
| Args | |
|---|---|
| global_step | A scalar int32orint64Tensor or a Python number. Must be
positive. | 
| decay_config | A nsl.configs.DecayConfigfor computing the decay value. | 
| init_value | A scalar Tensor to set the initial value to be decayed. | 
| Returns | |
|---|---|
| A scalar floatTensor. |