在 TensorFlow.org 上查看 | 在 Google Colab 中运行 | 在 Github 上查看源代码 | 下载笔记本 |
摘要
在本 colab 中,我们将展示如何使用在 TensorFlow Probability 中实现的各种优化器。
依赖项和前提条件
Import
%matplotlib inline
import contextlib
import functools
import os
import time
import numpy as np
import pandas as pd
import scipy as sp
from six.moves import urllib
from sklearn import preprocessing
import tensorflow.compat.v2 as tf
tf.enable_v2_behavior()
import tensorflow_probability as tfp
BFGS 和 L-BFGS 优化器
拟牛顿法是一种广受欢迎的一阶优化算法。这些方法使用对确切黑塞矩阵的正定逼近来查找搜索方向。
Broyden-Fletcher-Goldfarb-Shanno 算法 (BFGS) 是这一大致想法的具体实现。对于梯度在所有位置均连续(例如,使用 \(L_2\) 惩罚的线性回归)的中等规模问题,此算法适用并且也是首选方法。
L-BFGS 是有限内存版本的 BFGS,适合解决按照合理的成本无法计算黑塞矩阵或者黑塞矩阵不是稀疏矩阵的大型问题。它们不存储黑塞矩阵完全密集的 \(n \times n\) 近似值,而是仅保存长度为 \(n\) 的几个向量,用于隐式表示这些近似值。
Helper functions
CACHE_DIR = os.path.join(os.sep, 'tmp', 'datasets')
def make_val_and_grad_fn(value_fn):
@functools.wraps(value_fn)
def val_and_grad(x):
return tfp.math.value_and_gradient(value_fn, x)
return val_and_grad
@contextlib.contextmanager
def timed_execution():
t0 = time.time()
yield
dt = time.time() - t0
print('Evaluation took: %f seconds' % dt)
def np_value(tensor):
"""Get numpy value out of possibly nested tuple of tensors."""
if isinstance(tensor, tuple):
return type(tensor)(*(np_value(t) for t in tensor))
else:
return tensor.numpy()
def run(optimizer):
"""Run an optimizer and measure it's evaluation time."""
optimizer() # Warmup.
with timed_execution():
result = optimizer()
return np_value(result)
L-BFGS 用于简单二次函数
# Fix numpy seed for reproducibility
np.random.seed(12345)
# The objective must be supplied as a function that takes a single
# (Tensor) argument and returns a tuple. The first component of the
# tuple is the value of the objective at the supplied point and the
# second value is the gradient at the supplied point. The value must
# be a scalar and the gradient must have the same shape as the
# supplied argument.
# The `make_val_and_grad_fn` decorator helps transforming a function
# returning the objective value into one that returns both the gradient
# and the value. It also works for both eager and graph mode.
dim = 10
minimum = np.ones([dim])
scales = np.exp(np.random.randn(dim))
@make_val_and_grad_fn
def quadratic(x):
return tf.reduce_sum(scales * (x - minimum) ** 2, axis=-1)
# The minimization routine also requires you to supply an initial
# starting point for the search. For this example we choose a random
# starting point.
start = np.random.randn(dim)
# Finally an optional argument called tolerance let's you choose the
# stopping point of the search. The tolerance specifies the maximum
# (supremum) norm of the gradient vector at which the algorithm terminates.
# If you don't have a specific need for higher or lower accuracy, leaving
# this parameter unspecified (and hence using the default value of 1e-8)
# should be good enough.
tolerance = 1e-10
@tf.function
def quadratic_with_lbfgs():
return tfp.optimizer.lbfgs_minimize(
quadratic,
initial_position=tf.constant(start),
tolerance=tolerance)
results = run(quadratic_with_lbfgs)
# The optimization results contain multiple pieces of information. The most
# important fields are: 'converged' and 'position'.
# Converged is a boolean scalar tensor. As the name implies, it indicates
# whether the norm of the gradient at the final point was within tolerance.
# Position is the location of the minimum found. It is important to check
# that converged is True before using the value of the position.
print('L-BFGS Results')
print('Converged:', results.converged)
print('Location of the minimum:', results.position)
print('Number of iterations:', results.num_iterations)
Evaluation took: 0.014586 seconds L-BFGS Results Converged: True Location of the minimum: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] Number of iterations: 10
使用 BFGS 解决相同的问题
@tf.function
def quadratic_with_bfgs():
return tfp.optimizer.bfgs_minimize(
quadratic,
initial_position=tf.constant(start),
tolerance=tolerance)
results = run(quadratic_with_bfgs)
print('BFGS Results')
print('Converged:', results.converged)
print('Location of the minimum:', results.position)
print('Number of iterations:', results.num_iterations)
Evaluation took: 0.010468 seconds BFGS Results Converged: True Location of the minimum: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] Number of iterations: 10
使用 L1 惩罚的线性回归:前列腺癌数据
示例来自《The Elements of Statistical Learning, Data Mining, Inference, and Prediction》一书,作者为 Trevor Hastie、Robert Tibshirani 和 Jerome Friedman。
请注意,这是使用 L1 惩罚的优化问题。
获取数据集
def cache_or_download_file(cache_dir, url_base, filename):
"""Read a cached file or download it."""
filepath = os.path.join(cache_dir, filename)
if tf.io.gfile.exists(filepath):
return filepath
if not tf.io.gfile.exists(cache_dir):
tf.io.gfile.makedirs(cache_dir)
url = url_base + filename
print("Downloading {url} to {filepath}.".format(url=url, filepath=filepath))
urllib.request.urlretrieve(url, filepath)
return filepath
def get_prostate_dataset(cache_dir=CACHE_DIR):
"""Download the prostate dataset and read as Pandas dataframe."""
url_base = 'http://web.stanford.edu/~hastie/ElemStatLearn/datasets/'
return pd.read_csv(
cache_or_download_file(cache_dir, url_base, 'prostate.data'),
delim_whitespace=True, index_col=0)
prostate_df = get_prostate_dataset()
Downloading http://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data to /tmp/datasets/prostate.data.
问题定义
np.random.seed(12345)
feature_names = ['lcavol', 'lweight', 'age', 'lbph', 'svi', 'lcp',
'gleason', 'pgg45']
# Normalize features
scalar = preprocessing.StandardScaler()
prostate_df[feature_names] = pd.DataFrame(
scalar.fit_transform(
prostate_df[feature_names].astype('float64')))
# select training set
prostate_df_train = prostate_df[prostate_df.train == 'T']
# Select features and labels
features = prostate_df_train[feature_names]
labels = prostate_df_train[['lpsa']]
# Create tensors
feat = tf.constant(features.values, dtype=tf.float64)
lab = tf.constant(labels.values, dtype=tf.float64)
dtype = feat.dtype
regularization = 0 # regularization parameter
dim = 8 # number of features
# We pick a random starting point for the search
start = np.random.randn(dim + 1)
def regression_loss(params):
"""Compute loss for linear regression model with L1 penalty
Args:
params: A real tensor of shape [dim + 1]. The zeroth component
is the intercept term and the rest of the components are the
beta coefficients.
Returns:
The mean square error loss including L1 penalty.
"""
params = tf.squeeze(params)
intercept, beta = params[0], params[1:]
pred = tf.matmul(feat, tf.expand_dims(beta, axis=-1)) + intercept
mse_loss = tf.reduce_sum(
tf.cast(
tf.losses.mean_squared_error(y_true=lab, y_pred=pred), tf.float64))
l1_penalty = regularization * tf.reduce_sum(tf.abs(beta))
total_loss = mse_loss + l1_penalty
return total_loss
使用 L-BFGS 解决问题
使用 L-BFGS 进行拟合。即使 L1 惩罚会引起导数不连续,但 L-BFGS 实际上仍表现得很不错。
@tf.function
def l1_regression_with_lbfgs():
return tfp.optimizer.lbfgs_minimize(
make_val_and_grad_fn(regression_loss),
initial_position=tf.constant(start),
tolerance=1e-8)
results = run(l1_regression_with_lbfgs)
minimum = results.position
fitted_intercept = minimum[0]
fitted_beta = minimum[1:]
print('L-BFGS Results')
print('Converged:', results.converged)
print('Intercept: Fitted ({})'.format(fitted_intercept))
print('Beta: Fitted {}'.format(fitted_beta))
Evaluation took: 0.017987 seconds L-BFGS Results Converged: True Intercept: Fitted (2.3879985744556484) Beta: Fitted [ 0.68626215 0.28193532 -0.17030254 0.10799274 0.33634988 -0.24888523 0.11992237 0.08689026]
使用下山单纯形法解决问题
下山单纯形法是最受欢迎的无导数最小化方法之一。此优化器不使用梯度信息,不假设目标函数的可微分性,因此,适合非平滑目标函数,例如,使用 L1 惩罚的优化问题。
对于 \(n\) 维优化问题,该优化器维护一组 \(n+1\) 个候选解决方案,这些解决方案跨越非退化单纯形。优化器使用每个顶点的函数值基于一组变动(反射、膨胀、收缩和紧缩)连续修改单纯形。
# Nelder mead expects an initial_vertex of shape [n + 1, 1].
initial_vertex = tf.expand_dims(tf.constant(start, dtype=dtype), axis=-1)
@tf.function
def l1_regression_with_nelder_mead():
return tfp.optimizer.nelder_mead_minimize(
regression_loss,
initial_vertex=initial_vertex,
func_tolerance=1e-10,
position_tolerance=1e-10)
results = run(l1_regression_with_nelder_mead)
minimum = results.position.reshape([-1])
fitted_intercept = minimum[0]
fitted_beta = minimum[1:]
print('Nelder Mead Results')
print('Converged:', results.converged)
print('Intercept: Fitted ({})'.format(fitted_intercept))
print('Beta: Fitted {}'.format(fitted_beta))
Evaluation took: 0.325643 seconds Nelder Mead Results Converged: True Intercept: Fitted (2.387998456121595) Beta: Fitted [ 0.68626266 0.28193456 -0.17030291 0.10799375 0.33635132 -0.24888703 0.11992244 0.08689023]
使用 L2 惩罚的逻辑回归
在本例中,我们创建一个综合数据集进行分类,并使用 L-BFGS 优化器来拟合参数。
np.random.seed(12345)
dim = 5 # The number of features
n_obs = 10000 # The number of observations
betas = np.random.randn(dim) # The true beta
intercept = np.random.randn() # The true intercept
features = np.random.randn(n_obs, dim) # The feature matrix
probs = sp.special.expit(
np.matmul(features, np.expand_dims(betas, -1)) + intercept)
labels = sp.stats.bernoulli.rvs(probs) # The true labels
regularization = 0.8
feat = tf.constant(features)
lab = tf.constant(labels, dtype=feat.dtype)
@make_val_and_grad_fn
def negative_log_likelihood(params):
"""Negative log likelihood for logistic model with L2 penalty
Args:
params: A real tensor of shape [dim + 1]. The zeroth component
is the intercept term and the rest of the components are the
beta coefficients.
Returns:
The negative log likelihood plus the penalty term.
"""
intercept, beta = params[0], params[1:]
logit = tf.matmul(feat, tf.expand_dims(beta, -1)) + intercept
log_likelihood = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(
labels=lab, logits=logit))
l2_penalty = regularization * tf.reduce_sum(beta ** 2)
total_loss = log_likelihood + l2_penalty
return total_loss
start = np.random.randn(dim + 1)
@tf.function
def l2_regression_with_lbfgs():
return tfp.optimizer.lbfgs_minimize(
negative_log_likelihood,
initial_position=tf.constant(start),
tolerance=1e-8)
results = run(l2_regression_with_lbfgs)
minimum = results.position
fitted_intercept = minimum[0]
fitted_beta = minimum[1:]
print('Converged:', results.converged)
print('Intercept: Fitted ({}), Actual ({})'.format(fitted_intercept, intercept))
print('Beta:\n\tFitted {},\n\tActual {}'.format(fitted_beta, betas))
Evaluation took: 0.056751 seconds Converged: True Intercept: Fitted (1.4111415084244365), Actual (1.3934058329729904) Beta: Fitted [-0.18016612 0.53121578 -0.56420632 -0.5336374 2.00499675], Actual [-0.20470766 0.47894334 -0.51943872 -0.5557303 1.96578057]
支持批处理
BFGS 和 L-BFGS 都支持使用批处理计算来执行多种操作,例如,从许多不同起始点优化一个函数,或者从一个点优化多个参数函数。
单个函数,多个起始点
Himmelblau 函数是标准优化测试用例。该函数的表达式如下:
\[f(x, y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2\]
该函数具有四个最小值,取值分别如下:
- (3, 2),
- (-2.805118, 3.131312),
- (-3.779310, -3.283186),
- (3.584428, -1.848126)。
可以从相应的起始点到达所有这些最小值。
# The function to minimize must take as input a tensor of shape [..., n]. In
# this n=2 is the size of the domain of the input and [...] are batching
# dimensions. The return value must be of shape [...], i.e. a batch of scalars
# with the objective value of the function evaluated at each input point.
@make_val_and_grad_fn
def himmelblau(coord):
x, y = coord[..., 0], coord[..., 1]
return (x * x + y - 11) ** 2 + (x + y * y - 7) ** 2
starts = tf.constant([[1, 1],
[-2, 2],
[-1, -1],
[1, -2]], dtype='float64')
# The stopping_condition allows to further specify when should the search stop.
# The default, tfp.optimizer.converged_all, will proceed until all points have
# either converged or failed. There is also a tfp.optimizer.converged_any to
# stop as soon as the first point converges, or all have failed.
@tf.function
def batch_multiple_starts():
return tfp.optimizer.lbfgs_minimize(
himmelblau, initial_position=starts,
stopping_condition=tfp.optimizer.converged_all,
tolerance=1e-8)
results = run(batch_multiple_starts)
print('Converged:', results.converged)
print('Minima:', results.position)
Evaluation took: 0.019095 seconds Converged: [ True True True True] Minima: [[ 3. 2. ] [-2.80511809 3.13131252] [-3.77931025 -3.28318599] [ 3.58442834 -1.84812653]]
多个函数
为了便于演示,我们在本例中同时优化大量随机生成的高维二次曲面。
np.random.seed(12345)
dim = 100
batches = 500
minimum = np.random.randn(batches, dim)
scales = np.exp(np.random.randn(batches, dim))
@make_val_and_grad_fn
def quadratic(x):
return tf.reduce_sum(input_tensor=scales * (x - minimum)**2, axis=-1)
# Make all starting points (1, 1, ..., 1). Note not all starting points need
# to be the same.
start = tf.ones((batches, dim), dtype='float64')
@tf.function
def batch_multiple_functions():
return tfp.optimizer.lbfgs_minimize(
quadratic, initial_position=start,
stopping_condition=tfp.optimizer.converged_all,
max_iterations=100,
tolerance=1e-8)
results = run(batch_multiple_functions)
print('All converged:', np.all(results.converged))
print('Largest error:', np.max(results.position - minimum))
Evaluation took: 1.994132 seconds All converged: True Largest error: 4.4131473142527966e-08