مشاهده در TensorFlow.org | در Google Colab اجرا شود | در GitHub مشاهده کنید | دانلود دفترچه یادداشت | Keras Functional API |
معرفی
مدل آموزش ترکیب برای جنگل TensorFlow تصمیم گیری (TF-DF) خوش آمدید. این نوت بوک شما نشان می دهد که چگونه به نوشتن جنگل تصمیم های متعدد و مدل های شبکه عصبی هم با استفاده از یک لایه پردازش مشترک و API های کاربردی Keras .
ممکن است بخواهید برای بهبود عملکرد پیشبینیکننده (مجموعهسازی)، بهترین فناوریهای مدلسازی مختلف (مجموعهسازی مدلهای ناهمگن)، آموزش بخشهای مختلف مدل بر روی مجموعه دادههای مختلف (مثلاً پیشآموزش)، یا ایجاد یک مدل، مدلهایی را با هم بسازید. مدل انباشته (مثلاً یک مدل بر اساس پیش بینی های مدل دیگر عمل می کند).
این آموزش یک مورد استفاده پیشرفته از ترکیب مدل با استفاده از Functional API را پوشش می دهد. شما می توانید نمونه هایی برای سناریوهای ساده تر از ترکیب مدل در "ویژگی از پیش پردازش" بخش از این پیدا آموزش و در "استفاده از یک متن pretrained تعبیه" بخش از این آموزش .
در اینجا ساختار مدلی که می سازید آمده است:
!pip install graphviz -U --quiet
from graphviz import Source
Source("""
digraph G {
raw_data [label="Input features"];
preprocess_data [label="Learnable NN pre-processing", shape=rect];
raw_data -> preprocess_data
subgraph cluster_0 {
color=grey;
a1[label="NN layer", shape=rect];
b1[label="NN layer", shape=rect];
a1 -> b1;
label = "Model #1";
}
subgraph cluster_1 {
color=grey;
a2[label="NN layer", shape=rect];
b2[label="NN layer", shape=rect];
a2 -> b2;
label = "Model #2";
}
subgraph cluster_2 {
color=grey;
a3[label="Decision Forest", shape=rect];
label = "Model #3";
}
subgraph cluster_3 {
color=grey;
a4[label="Decision Forest", shape=rect];
label = "Model #4";
}
preprocess_data -> a1;
preprocess_data -> a2;
preprocess_data -> a3;
preprocess_data -> a4;
b1 -> aggr;
b2 -> aggr;
a3 -> aggr;
a4 -> aggr;
aggr [label="Aggregation (mean)", shape=rect]
aggr -> predictions
}
""")
مدل ترکیبی شما دارای سه مرحله است:
- مرحله اول یک لایه پیش پردازش است که از یک شبکه عصبی تشکیل شده و در تمام مدل های مرحله بعد مشترک است. در عمل، چنین لایه پیش پردازشی می تواند یک جاسازی از پیش آموزش دیده برای تنظیم دقیق یا یک شبکه عصبی اولیه تصادفی باشد.
- مرحله دوم مجموعه ای از دو مدل جنگل تصمیم و دو مدل شبکه عصبی است.
- آخرین مرحله، میانگین پیش بینی مدل ها در مرحله دوم است. این شامل هیچ وزن قابل یادگیری نیست.
شبکه های عصبی با استفاده از آموزش دیده الگوریتم پس انتشار و گرادیان نزولی. این الگوریتم دارای دو ویژگی مهم است: (1) لایه شبکه عصبی را می توان آموزش داد اگر یک گرادیان اتلاف دریافت کند (به طور دقیق تر، گرادیان تلفات مطابق با خروجی لایه)، و (2) الگوریتم "انتقال" گرادیان تلفات از خروجی لایه به ورودی لایه (این قانون زنجیره ای است). به این دو دلیل، Backpropagation می تواند چندین لایه از شبکه های عصبی را که روی هم قرار گرفته اند را با هم آموزش دهد.
در این مثال، جنگل تصمیم با آموزش دیده جنگل تصادفی الگوریتم (RF). برخلاف Backpropagation، آموزش RF گرادیان تلفات را از خروجی به ورودی خود "انتقال" نمی کند. به همین دلیل، الگوریتم RF کلاسیک را نمی توان برای آموزش یا تنظیم دقیق یک شبکه عصبی در زیر استفاده کرد. به عبارت دیگر، مراحل "جنگل تصمیم" را نمی توان برای آموزش "بلوک پیش پردازش NN قابل یادگیری" استفاده کرد.
- آموزش مرحله پیش پردازش و شبکه های عصبی.
- مراحل جنگل تصمیم را آموزش دهید.
TensorFlow Decision Forests را نصب کنید
TF-DF را با اجرای سلول زیر نصب کنید.
pip install tensorflow_decision_forests -U --quiet
نصب Wurlitzer برای نشان دادن سیاهههای مربوط آموزش دقیق است. این فقط در نوت بوک مورد نیاز است.
pip install wurlitzer -U --quiet
واردات کتابخانه ها
import tensorflow_decision_forests as tfdf
import os
import numpy as np
import pandas as pd
import tensorflow as tf
import math
import matplotlib.pyplot as plt
try:
from wurlitzer import sys_pipes
except:
from colabtools.googlelog import CaptureLog as sys_pipes
from IPython.core.magic import register_line_magic
from IPython.display import Javascript
WARNING:root:Failure to load the custom c++ tensorflow ops. This error is likely caused the version of TensorFlow and TensorFlow Decision Forests are not compatible. WARNING:root:TF Parameter Server distributed training not available.
مجموعه داده
شما از یک مجموعه داده مصنوعی ساده در این آموزش استفاده خواهید کرد تا تفسیر مدل نهایی آسانتر شود.
def make_dataset(num_examples, num_features, seed=1234):
np.random.seed(seed)
features = np.random.uniform(-1, 1, size=(num_examples, num_features))
noise = np.random.uniform(size=(num_examples))
left_side = np.sqrt(
np.sum(np.multiply(np.square(features[:, 0:2]), [1, 2]), axis=1))
right_side = features[:, 2] * 0.7 + np.sin(
features[:, 3] * 10) * 0.5 + noise * 0.0 + 0.5
labels = left_side <= right_side
return features, labels.astype(int)
چند نمونه تولید کنید:
make_dataset(num_examples=5, num_features=4)
(array([[-0.6169611 , 0.24421754, -0.12454452, 0.57071717], [ 0.55995162, -0.45481479, -0.44707149, 0.60374436], [ 0.91627871, 0.75186527, -0.28436546, 0.00199025], [ 0.36692587, 0.42540405, -0.25949849, 0.12239237], [ 0.00616633, -0.9724631 , 0.54565324, 0.76528238]]), array([0, 0, 0, 1, 0]))
همچنین می توانید آنها را رسم کنید تا ایده ای از الگوی مصنوعی بدست آورید:
plot_features, plot_label = make_dataset(num_examples=50000, num_features=4)
plt.rcParams["figure.figsize"] = [8, 8]
common_args = dict(c=plot_label, s=1.0, alpha=0.5)
plt.subplot(2, 2, 1)
plt.scatter(plot_features[:, 0], plot_features[:, 1], **common_args)
plt.subplot(2, 2, 2)
plt.scatter(plot_features[:, 1], plot_features[:, 2], **common_args)
plt.subplot(2, 2, 3)
plt.scatter(plot_features[:, 0], plot_features[:, 2], **common_args)
plt.subplot(2, 2, 4)
plt.scatter(plot_features[:, 0], plot_features[:, 3], **common_args)
<matplotlib.collections.PathCollection at 0x7f6b78d20e90>
توجه داشته باشید که این الگو صاف است و تراز محور نیست. این مزیت مدل های شبکه عصبی است. این به این دلیل است که برای یک شبکه عصبی راحت تر از درخت تصمیم است که مرزهای تصمیم گرد و غیر هم تراز داشته باشد.
از سوی دیگر، مدل را بر روی مجموعه داده های کوچک با 2500 مثال آموزش خواهیم داد. این مزیت مدل های جنگل تصمیم گیری را خواهد داشت. این به این دلیل است که جنگلهای تصمیم با استفاده از تمام اطلاعات موجود از مثالها بسیار کارآمدتر هستند (جنگلهای تصمیمگیری «نمونه کارآمد» هستند).
مجموعه شبکههای عصبی و جنگلهای تصمیمگیری ما از بهترینهای هر دو جهان استفاده خواهند کرد.
بیایید ایجاد یک قطار و آزمون tf.data.Dataset
:
def make_tf_dataset(batch_size=64, **args):
features, labels = make_dataset(**args)
return tf.data.Dataset.from_tensor_slices(
(features, labels)).batch(batch_size)
num_features = 10
train_dataset = make_tf_dataset(
num_examples=2500, num_features=num_features, batch_size=64, seed=1234)
test_dataset = make_tf_dataset(
num_examples=10000, num_features=num_features, batch_size=64, seed=5678)
ساختار مدل
ساختار مدل را به صورت زیر تعریف کنید:
# Input features.
raw_features = tf.keras.layers.Input(shape=(num_features,))
# Stage 1
# =======
# Common learnable pre-processing
preprocessor = tf.keras.layers.Dense(10, activation=tf.nn.relu6)
preprocess_features = preprocessor(raw_features)
# Stage 2
# =======
# Model #1: NN
m1_z1 = tf.keras.layers.Dense(5, activation=tf.nn.relu6)(preprocess_features)
m1_pred = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(m1_z1)
# Model #2: NN
m2_z1 = tf.keras.layers.Dense(5, activation=tf.nn.relu6)(preprocess_features)
m2_pred = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(m2_z1)
def seed_advanced_argument(seed):
"""Create a seed argument for a TF-DF model.
TODO(gbm): Surface the "seed" argument to the model constructor directly.
"""
return tfdf.keras.AdvancedArguments(
yggdrasil_training_config=tfdf.keras.core.YggdrasilTrainingConfig(
random_seed=seed))
# Model #3: DF
model_3 = tfdf.keras.RandomForestModel(
num_trees=1000, advanced_arguments=seed_advanced_argument(1234))
m3_pred = model_3(preprocess_features)
# Model #4: DF
model_4 = tfdf.keras.RandomForestModel(
num_trees=1000,
#split_axis="SPARSE_OBLIQUE", # Uncomment this line to increase the quality of this model
advanced_arguments=seed_advanced_argument(4567))
m4_pred = model_4(preprocess_features)
# Since TF-DF uses deterministic learning algorithms, you should set the model's
# training seed to different values otherwise both
# `tfdf.keras.RandomForestModel` will be exactly the same.
# Stage 3
# =======
mean_nn_only = tf.reduce_mean(tf.stack([m1_pred, m2_pred], axis=0), axis=0)
mean_nn_and_df = tf.reduce_mean(
tf.stack([m1_pred, m2_pred, m3_pred, m4_pred], axis=0), axis=0)
# Keras Models
# ============
ensemble_nn_only = tf.keras.models.Model(raw_features, mean_nn_only)
ensemble_nn_and_df = tf.keras.models.Model(raw_features, mean_nn_and_df)
WARNING:tensorflow:AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is. Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:absl:The model was called directly (i.e. using `model(data)` instead of using `model.predict(data)`) before being trained. The model will only return zeros until trained. The output shape might change after training Tensor("inputs:0", shape=(None, 10), dtype=float32) WARNING:tensorflow:AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is. Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING: AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is. Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:absl:The model was called directly (i.e. using `model(data)` instead of using `model.predict(data)`) before being trained. The model will only return zeros until trained. The output shape might change after training Tensor("inputs:0", shape=(None, 10), dtype=float32)
قبل از آموزش مدل، می توانید آن را رسم کنید تا بررسی کنید که آیا شبیه نمودار اولیه است یا خیر.
from keras.utils.vis_utils import plot_model
plot_model(ensemble_nn_and_df, to_file="/tmp/model.png", show_shapes=True)
آموزش مدل
ابتدا پیش پردازش و دو لایه شبکه عصبی را با استفاده از الگوریتم پس انتشار آموزش دهید.
%%time
ensemble_nn_only.compile(
optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.BinaryCrossentropy(),
metrics=["accuracy"])
ensemble_nn_only.fit(train_dataset, epochs=20, validation_data=test_dataset)
Epoch 1/20 40/40 [==============================] - 1s 13ms/step - loss: 0.6115 - accuracy: 0.7308 - val_loss: 0.5857 - val_accuracy: 0.7407 Epoch 2/20 40/40 [==============================] - 0s 9ms/step - loss: 0.5645 - accuracy: 0.7484 - val_loss: 0.5487 - val_accuracy: 0.7391 Epoch 3/20 40/40 [==============================] - 0s 9ms/step - loss: 0.5310 - accuracy: 0.7496 - val_loss: 0.5237 - val_accuracy: 0.7392 Epoch 4/20 40/40 [==============================] - 0s 9ms/step - loss: 0.5074 - accuracy: 0.7500 - val_loss: 0.5055 - val_accuracy: 0.7391 Epoch 5/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4887 - accuracy: 0.7496 - val_loss: 0.4901 - val_accuracy: 0.7397 Epoch 6/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4725 - accuracy: 0.7520 - val_loss: 0.4763 - val_accuracy: 0.7440 Epoch 7/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4585 - accuracy: 0.7584 - val_loss: 0.4644 - val_accuracy: 0.7542 Epoch 8/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4470 - accuracy: 0.7700 - val_loss: 0.4544 - val_accuracy: 0.7682 Epoch 9/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4374 - accuracy: 0.7804 - val_loss: 0.4462 - val_accuracy: 0.7789 Epoch 10/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4297 - accuracy: 0.7848 - val_loss: 0.4395 - val_accuracy: 0.7865 Epoch 11/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4232 - accuracy: 0.7904 - val_loss: 0.4339 - val_accuracy: 0.7933 Epoch 12/20 40/40 [==============================] - 0s 10ms/step - loss: 0.4176 - accuracy: 0.7952 - val_loss: 0.4289 - val_accuracy: 0.7963 Epoch 13/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4126 - accuracy: 0.7992 - val_loss: 0.4243 - val_accuracy: 0.8010 Epoch 14/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4078 - accuracy: 0.8052 - val_loss: 0.4199 - val_accuracy: 0.8033 Epoch 15/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4029 - accuracy: 0.8096 - val_loss: 0.4155 - val_accuracy: 0.8067 Epoch 16/20 40/40 [==============================] - 0s 9ms/step - loss: 0.3981 - accuracy: 0.8132 - val_loss: 0.4109 - val_accuracy: 0.8099 Epoch 17/20 40/40 [==============================] - 0s 9ms/step - loss: 0.3932 - accuracy: 0.8152 - val_loss: 0.4061 - val_accuracy: 0.8129 Epoch 18/20 40/40 [==============================] - 0s 9ms/step - loss: 0.3883 - accuracy: 0.8208 - val_loss: 0.4012 - val_accuracy: 0.8149 Epoch 19/20 40/40 [==============================] - 0s 9ms/step - loss: 0.3832 - accuracy: 0.8232 - val_loss: 0.3963 - val_accuracy: 0.8168 Epoch 20/20 40/40 [==============================] - 0s 10ms/step - loss: 0.3783 - accuracy: 0.8276 - val_loss: 0.3912 - val_accuracy: 0.8203 CPU times: user 12.1 s, sys: 2.14 s, total: 14.2 s Wall time: 8.54 s <keras.callbacks.History at 0x7f6b181d7450>
بیایید پیش پردازش و بخش را فقط با دو شبکه عصبی ارزیابی کنیم:
evaluation_nn_only = ensemble_nn_only.evaluate(test_dataset, return_dict=True)
print("Accuracy (NN #1 and #2 only): ", evaluation_nn_only["accuracy"])
print("Loss (NN #1 and #2 only): ", evaluation_nn_only["loss"])
157/157 [==============================] - 0s 2ms/step - loss: 0.3912 - accuracy: 0.8203 Accuracy (NN #1 and #2 only): 0.8202999830245972 Loss (NN #1 and #2 only): 0.39124569296836853
بیایید دو مؤلفه Decision Forest (یکی پس از دیگری) را آموزش دهیم.
%%time
train_dataset_with_preprocessing = train_dataset.map(lambda x,y: (preprocessor(x), y))
test_dataset_with_preprocessing = test_dataset.map(lambda x,y: (preprocessor(x), y))
model_3.fit(train_dataset_with_preprocessing)
model_4.fit(train_dataset_with_preprocessing)
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING: AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING: AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert 23/40 [================>.............] - ETA: 0s [INFO kernel.cc:736] Start Yggdrasil model training [INFO kernel.cc:737] Collect training examples [INFO kernel.cc:392] Number of batches: 40 [INFO kernel.cc:393] Number of examples: 2500 [INFO kernel.cc:759] Dataset: Number of records: 2500 Number of columns: 11 Number of columns by type: NUMERICAL: 10 (90.9091%) CATEGORICAL: 1 (9.09091%) Columns: NUMERICAL: 10 (90.9091%) 0: "data:0.0" NUMERICAL mean:0.356465 min:0 max:2.37352 sd:0.451418 1: "data:0.1" NUMERICAL mean:0.392088 min:0 max:2.3411 sd:0.470499 2: "data:0.2" NUMERICAL mean:0.382386 min:0 max:2.11809 sd:0.483672 3: "data:0.3" NUMERICAL mean:0.290395 min:0 max:2.27481 sd:0.400102 4: "data:0.4" NUMERICAL mean:0.210684 min:0 max:1.35897 sd:0.281379 5: "data:0.5" NUMERICAL mean:0.4008 min:0 max:2.06561 sd:0.453018 6: "data:0.6" NUMERICAL mean:0.289166 min:0 max:2.0263 sd:0.407337 7: "data:0.7" NUMERICAL mean:0.277971 min:0 max:1.77561 sd:0.363215 8: "data:0.8" NUMERICAL mean:0.41254 min:0 max:2.79804 sd:0.553333 9: "data:0.9" NUMERICAL mean:0.197082 min:0 max:1.60773 sd:0.298194 CATEGORICAL: 1 (9.09091%) 10: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item Terminology: nas: Number of non-available (i.e. missing) values. ood: Out of dictionary. manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred. tokenized: The attribute value is obtained through tokenization. has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string. vocab-size: Number of unique values. [INFO kernel.cc:762] Configure learner [INFO kernel.cc:787] Training config: learner: "RANDOM_FOREST" features: "data:0\\.0" features: "data:0\\.1" features: "data:0\\.2" features: "data:0\\.3" features: "data:0\\.4" features: "data:0\\.5" features: "data:0\\.6" features: "data:0\\.7" features: "data:0\\.8" features: "data:0\\.9" label: "__LABEL" task: CLASSIFICATION random_seed: 1234 [yggdrasil_decision_forests.model.random_forest.proto.random_forest_config] { num_trees: 1000 decision_tree { max_depth: 16 min_examples: 5 in_split_min_examples_check: true missing_value_policy: GLOBAL_IMPUTATION allow_na_conditions: false categorical_set_greedy_forward { sampling: 0.1 max_num_items: -1 min_item_frequency: 1 } growing_strategy_local { } categorical { cart { } } num_candidate_attributes_ratio: -1 axis_aligned_split { } internal { sorting_strategy: PRESORTED } } winner_take_all_inference: true compute_oob_performances: true compute_oob_variable_importances: false adapt_bootstrap_size_ratio_for_maximum_training_duration: false } [INFO kernel.cc:790] Deployment config: num_threads: 6 [INFO kernel.cc:817] Train model [INFO random_forest.cc:315] Training random forest on 2500 example(s) and 10 feature(s). [INFO random_forest.cc:628] Training of tree 1/1000 (tree index:1) done accuracy:0.781996 logloss:7.85767 [INFO random_forest.cc:628] Training of tree 11/1000 (tree index:8) done accuracy:0.79895 logloss:2.7263 [INFO random_forest.cc:628] Training of tree 21/1000 (tree index:20) done accuracy:0.8012 logloss:1.26831 [INFO random_forest.cc:628] Training of tree 31/1000 (tree index:30) done accuracy:0.8076 logloss:0.898323 [INFO random_forest.cc:628] Training of tree 41/1000 (tree index:37) done accuracy:0.8084 logloss:0.736323 [INFO random_forest.cc:628] Training of tree 51/1000 (tree index:51) done accuracy:0.8072 logloss:0.612984 [INFO random_forest.cc:628] Training of tree 61/1000 (tree index:63) done accuracy:0.8104 logloss:0.55782 [INFO random_forest.cc:628] Training of tree 71/1000 (tree index:69) done accuracy:0.81 logloss:0.544938 [INFO random_forest.cc:628] Training of tree 81/1000 (tree index:80) done accuracy:0.814 logloss:0.532167 [INFO random_forest.cc:628] Training of tree 91/1000 (tree index:89) done accuracy:0.8144 logloss:0.530892 [INFO random_forest.cc:628] Training of tree 101/1000 (tree index:100) done accuracy:0.814 logloss:0.516588 [INFO random_forest.cc:628] Training of tree 111/1000 (tree index:108) done accuracy:0.8128 logloss:0.490739 [INFO random_forest.cc:628] Training of tree 121/1000 (tree index:118) done accuracy:0.8124 logloss:0.490544 [INFO random_forest.cc:628] Training of tree 131/1000 (tree index:134) done accuracy:0.8112 logloss:0.451653 [INFO random_forest.cc:628] Training of tree 141/1000 (tree index:140) done accuracy:0.8136 logloss:0.437757 [INFO random_forest.cc:628] Training of tree 151/1000 (tree index:150) done accuracy:0.8144 logloss:0.424328 [INFO random_forest.cc:628] Training of tree 161/1000 (tree index:159) done accuracy:0.8132 logloss:0.42426 [INFO random_forest.cc:628] Training of tree 171/1000 (tree index:168) done accuracy:0.814 logloss:0.411061 [INFO random_forest.cc:628] Training of tree 181/1000 (tree index:184) done accuracy:0.8136 logloss:0.411324 [INFO random_forest.cc:628] Training of tree 191/1000 (tree index:190) done accuracy:0.8148 logloss:0.410002 [INFO random_forest.cc:628] Training of tree 201/1000 (tree index:200) done accuracy:0.8144 logloss:0.409526 [INFO random_forest.cc:628] Training of tree 211/1000 (tree index:208) done accuracy:0.814 logloss:0.40944 [INFO random_forest.cc:628] Training of tree 221/1000 (tree index:218) done accuracy:0.8152 logloss:0.409039 [INFO random_forest.cc:628] Training of tree 231/1000 (tree index:234) done accuracy:0.8144 logloss:0.409254 [INFO random_forest.cc:628] Training of tree 241/1000 (tree index:242) done accuracy:0.8144 logloss:0.40879 [INFO random_forest.cc:628] Training of tree 251/1000 (tree index:251) done accuracy:0.8152 logloss:0.395703 [INFO random_forest.cc:628] Training of tree 261/1000 (tree index:259) done accuracy:0.8168 logloss:0.395747 [INFO random_forest.cc:628] Training of tree 271/1000 (tree index:268) done accuracy:0.814 logloss:0.394959 [INFO random_forest.cc:628] Training of tree 281/1000 (tree index:283) done accuracy:0.8148 logloss:0.395202 [INFO random_forest.cc:628] Training of tree 291/1000 (tree index:292) done accuracy:0.8136 logloss:0.395536 [INFO random_forest.cc:628] Training of tree 301/1000 (tree index:300) done accuracy:0.8128 logloss:0.39472 [INFO random_forest.cc:628] Training of tree 311/1000 (tree index:308) done accuracy:0.8124 logloss:0.394763 [INFO random_forest.cc:628] Training of tree 321/1000 (tree index:318) done accuracy:0.8132 logloss:0.394732 [INFO random_forest.cc:628] Training of tree 331/1000 (tree index:334) done accuracy:0.8136 logloss:0.394822 [INFO random_forest.cc:628] Training of tree 341/1000 (tree index:343) done accuracy:0.812 logloss:0.395051 [INFO random_forest.cc:628] Training of tree 351/1000 (tree index:350) done accuracy:0.8132 logloss:0.39492 [INFO random_forest.cc:628] Training of tree 361/1000 (tree index:358) done accuracy:0.8132 logloss:0.395054 [INFO random_forest.cc:628] Training of tree 371/1000 (tree index:368) done accuracy:0.812 logloss:0.395588 [INFO random_forest.cc:628] Training of tree 381/1000 (tree index:384) done accuracy:0.8104 logloss:0.395576 [INFO random_forest.cc:628] Training of tree 391/1000 (tree index:390) done accuracy:0.8132 logloss:0.395713 [INFO random_forest.cc:628] Training of tree 401/1000 (tree index:400) done accuracy:0.8088 logloss:0.383693 [INFO random_forest.cc:628] Training of tree 411/1000 (tree index:408) done accuracy:0.8088 logloss:0.383575 [INFO random_forest.cc:628] Training of tree 421/1000 (tree index:417) done accuracy:0.8096 logloss:0.383934 [INFO random_forest.cc:628] Training of tree 431/1000 (tree index:434) done accuracy:0.81 logloss:0.384001 [INFO random_forest.cc:628] Training of tree 441/1000 (tree index:442) done accuracy:0.808 logloss:0.384118 [INFO random_forest.cc:628] Training of tree 451/1000 (tree index:450) done accuracy:0.8096 logloss:0.384076 [INFO random_forest.cc:628] Training of tree 461/1000 (tree index:458) done accuracy:0.8104 logloss:0.383208 [INFO random_forest.cc:628] Training of tree 471/1000 (tree index:468) done accuracy:0.812 logloss:0.383298 [INFO random_forest.cc:628] Training of tree 481/1000 (tree index:482) done accuracy:0.81 logloss:0.38358 [INFO random_forest.cc:628] Training of tree 491/1000 (tree index:492) done accuracy:0.812 logloss:0.383453 [INFO random_forest.cc:628] Training of tree 501/1000 (tree index:500) done accuracy:0.8128 logloss:0.38317 [INFO random_forest.cc:628] Training of tree 511/1000 (tree index:508) done accuracy:0.812 logloss:0.383369 [INFO random_forest.cc:628] Training of tree 521/1000 (tree index:518) done accuracy:0.8132 logloss:0.383461 [INFO random_forest.cc:628] Training of tree 531/1000 (tree index:532) done accuracy:0.8124 logloss:0.38342 [INFO random_forest.cc:628] Training of tree 541/1000 (tree index:542) done accuracy:0.8128 logloss:0.383376 [INFO random_forest.cc:628] Training of tree 551/1000 (tree index:550) done accuracy:0.8128 logloss:0.383663 [INFO random_forest.cc:628] Training of tree 561/1000 (tree index:558) done accuracy:0.812 logloss:0.383574 [INFO random_forest.cc:628] Training of tree 571/1000 (tree index:568) done accuracy:0.8116 logloss:0.383529 [INFO random_forest.cc:628] Training of tree 581/1000 (tree index:580) done accuracy:0.8128 logloss:0.383624 [INFO random_forest.cc:628] Training of tree 591/1000 (tree index:592) done accuracy:0.814 logloss:0.383599 [INFO random_forest.cc:628] Training of tree 601/1000 (tree index:601) done accuracy:0.8148 logloss:0.383524 [INFO random_forest.cc:628] Training of tree 611/1000 (tree index:608) done accuracy:0.8156 logloss:0.383555 [INFO random_forest.cc:628] Training of tree 621/1000 (tree index:619) done accuracy:0.8132 logloss:0.382847 [INFO random_forest.cc:628] Training of tree 631/1000 (tree index:632) done accuracy:0.8124 logloss:0.382872 [INFO random_forest.cc:628] Training of tree 641/1000 (tree index:641) done accuracy:0.8144 logloss:0.382728 [INFO random_forest.cc:628] Training of tree 651/1000 (tree index:648) done accuracy:0.8132 logloss:0.382554 [INFO random_forest.cc:628] Training of tree 661/1000 (tree index:658) done accuracy:0.8128 logloss:0.382705 [INFO random_forest.cc:628] Training of tree 671/1000 (tree index:670) done accuracy:0.8136 logloss:0.38288 [INFO random_forest.cc:628] Training of tree 681/1000 (tree index:682) done accuracy:0.8152 logloss:0.383007 [INFO random_forest.cc:628] Training of tree 691/1000 (tree index:690) done accuracy:0.8144 logloss:0.382971 [INFO random_forest.cc:628] Training of tree 701/1000 (tree index:698) done accuracy:0.8152 logloss:0.382869 [INFO random_forest.cc:628] Training of tree 711/1000 (tree index:708) done accuracy:0.8152 logloss:0.382792 [INFO random_forest.cc:628] Training of tree 721/1000 (tree index:722) done accuracy:0.8136 logloss:0.38274 [INFO random_forest.cc:628] Training of tree 731/1000 (tree index:732) done accuracy:0.8144 logloss:0.38268 [INFO random_forest.cc:628] Training of tree 741/1000 (tree index:740) done accuracy:0.814 logloss:0.382835 [INFO random_forest.cc:628] Training of tree 751/1000 (tree index:751) done accuracy:0.8152 logloss:0.38297 [INFO random_forest.cc:628] Training of tree 761/1000 (tree index:758) done accuracy:0.8152 logloss:0.382917 [INFO random_forest.cc:628] Training of tree 771/1000 (tree index:770) done accuracy:0.8156 logloss:0.370596 [INFO random_forest.cc:628] Training of tree 781/1000 (tree index:782) done accuracy:0.816 logloss:0.370687 [INFO random_forest.cc:628] Training of tree 791/1000 (tree index:789) done accuracy:0.8164 logloss:0.37068 [INFO random_forest.cc:628] Training of tree 801/1000 (tree index:798) done accuracy:0.8172 logloss:0.370535 [INFO random_forest.cc:628] Training of tree 811/1000 (tree index:809) done accuracy:0.816 logloss:0.370674 [INFO random_forest.cc:628] Training of tree 821/1000 (tree index:821) done accuracy:0.816 logloss:0.370929 [INFO random_forest.cc:628] Training of tree 831/1000 (tree index:829) done accuracy:0.8148 logloss:0.370904 [INFO random_forest.cc:628] Training of tree 841/1000 (tree index:841) done accuracy:0.8164 logloss:0.371016 [INFO random_forest.cc:628] Training of tree 851/1000 (tree index:849) done accuracy:0.8168 logloss:0.370914 [INFO random_forest.cc:628] Training of tree 861/1000 (tree index:860) done accuracy:0.8164 logloss:0.371043 [INFO random_forest.cc:628] Training of tree 871/1000 (tree index:871) done accuracy:0.8168 logloss:0.371094 [INFO random_forest.cc:628] Training of tree 881/1000 (tree index:878) done accuracy:0.8152 logloss:0.371054 [INFO random_forest.cc:628] Training of tree 891/1000 (tree index:888) done accuracy:0.8156 logloss:0.370908 [INFO random_forest.cc:628] Training of tree 901/1000 (tree index:900) done accuracy:0.8156 logloss:0.370831 [INFO random_forest.cc:628] Training of tree 911/1000 (tree index:910) done accuracy:0.8152 logloss:0.370775 [INFO random_forest.cc:628] Training of tree 921/1000 (tree index:922) done accuracy:0.814 logloss:0.370804 [INFO random_forest.cc:628] Training of tree 931/1000 (tree index:929) done accuracy:0.8148 logloss:0.370495 [INFO random_forest.cc:628] Training of tree 941/1000 (tree index:941) done accuracy:0.816 logloss:0.370443 [INFO random_forest.cc:628] Training of tree 951/1000 (tree index:948) done accuracy:0.8156 logloss:0.370486 [INFO random_forest.cc:628] Training of tree 961/1000 (tree index:960) done accuracy:0.8152 logloss:0.370519 [INFO random_forest.cc:628] Training of tree 971/1000 (tree index:971) done accuracy:0.8144 logloss:0.370543 [INFO random_forest.cc:628] Training of tree 981/1000 (tree index:983) done accuracy:0.8144 logloss:0.370629 [INFO random_forest.cc:628] Training of tree 991/1000 (tree index:991) done accuracy:0.814 logloss:0.370625 [INFO random_forest.cc:628] Training of tree 1000/1000 (tree index:998) done accuracy:0.8144 logloss:0.370667 [INFO random_forest.cc:696] Final OOB metrics: accuracy:0.8144 logloss:0.370667 [INFO kernel.cc:828] Export model in log directory: /tmp/tmp9izglk4r [INFO kernel.cc:836] Save model in resources [INFO kernel.cc:988] Loading model from path 40/40 [==============================] - 6s 66ms/step [INFO decision_forest.cc:590] Model loaded with 1000 root(s), 324508 node(s), and 10 input feature(s). [INFO abstract_model.cc:993] Engine "RandomForestOptPred" built [INFO kernel.cc:848] Use fast generic engine 24/40 [=================>............] - ETA: 0s [INFO kernel.cc:736] Start Yggdrasil model training [INFO kernel.cc:737] Collect training examples [INFO kernel.cc:392] Number of batches: 40 [INFO kernel.cc:393] Number of examples: 2500 [INFO kernel.cc:759] Dataset: Number of records: 2500 Number of columns: 11 Number of columns by type: NUMERICAL: 10 (90.9091%) CATEGORICAL: 1 (9.09091%) Columns: NUMERICAL: 10 (90.9091%) 0: "data:0.0" NUMERICAL mean:0.356465 min:0 max:2.37352 sd:0.451418 1: "data:0.1" NUMERICAL mean:0.392088 min:0 max:2.3411 sd:0.470499 2: "data:0.2" NUMERICAL mean:0.382386 min:0 max:2.11809 sd:0.483672 3: "data:0.3" NUMERICAL mean:0.290395 min:0 max:2.27481 sd:0.400102 4: "data:0.4" NUMERICAL mean:0.210684 min:0 max:1.35897 sd:0.281379 5: "data:0.5" NUMERICAL mean:0.4008 min:0 max:2.06561 sd:0.453018 6: "data:0.6" NUMERICAL mean:0.289166 min:0 max:2.0263 sd:0.407337 7: "data:0.7" NUMERICAL mean:0.277971 min:0 max:1.77561 sd:0.363215 8: "data:0.8" NUMERICAL mean:0.41254 min:0 max:2.79804 sd:0.553333 9: "data:0.9" NUMERICAL mean:0.197082 min:0 max:1.60773 sd:0.298194 CATEGORICAL: 1 (9.09091%) 10: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item Terminology: nas: Number of non-available (i.e. missing) values. ood: Out of dictionary. manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred. tokenized: The attribute value is obtained through tokenization. has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string. vocab-size: Number of unique values. [INFO kernel.cc:762] Configure learner [INFO kernel.cc:787] Training config: learner: "RANDOM_FOREST" features: "data:0\\.0" features: "data:0\\.1" features: "data:0\\.2" features: "data:0\\.3" features: "data:0\\.4" features: "data:0\\.5" features: "data:0\\.6" features: "data:0\\.7" features: "data:0\\.8" features: "data:0\\.9" label: "__LABEL" task: CLASSIFICATION random_seed: 4567 [yggdrasil_decision_forests.model.random_forest.proto.random_forest_config] { num_trees: 1000 decision_tree { max_depth: 16 min_examples: 5 in_split_min_examples_check: true missing_value_policy: GLOBAL_IMPUTATION allow_na_conditions: false categorical_set_greedy_forward { sampling: 0.1 max_num_items: -1 min_item_frequency: 1 } growing_strategy_local { } categorical { cart { } } num_candidate_attributes_ratio: -1 axis_aligned_split { } internal { sorting_strategy: PRESORTED } } winner_take_all_inference: true compute_oob_performances: true compute_oob_variable_importances: false adapt_bootstrap_size_ratio_for_maximum_training_duration: false } [INFO kernel.cc:790] Deployment config: num_threads: 6 [INFO kernel.cc:817] Train model [INFO random_forest.cc:315] Training random forest on 2500 example(s) and 10 feature(s). [INFO random_forest.cc:628] Training of tree 1/1000 (tree index:1) done accuracy:0.783262 logloss:7.81204 [INFO random_forest.cc:628] Training of tree 11/1000 (tree index:9) done accuracy:0.801127 logloss:2.73187 [INFO random_forest.cc:628] Training of tree 21/1000 (tree index:19) done accuracy:0.811449 logloss:1.1286 [INFO random_forest.cc:628] Training of tree 31/1000 (tree index:32) done accuracy:0.8132 logloss:0.910787 [INFO random_forest.cc:628] Training of tree 41/1000 (tree index:42) done accuracy:0.812 logloss:0.745694 [INFO random_forest.cc:628] Training of tree 51/1000 (tree index:48) done accuracy:0.8144 logloss:0.690226 [INFO random_forest.cc:628] Training of tree 61/1000 (tree index:59) done accuracy:0.8136 logloss:0.659137 [INFO random_forest.cc:628] Training of tree 71/1000 (tree index:72) done accuracy:0.8176 logloss:0.577357 [INFO random_forest.cc:628] Training of tree 81/1000 (tree index:79) done accuracy:0.814 logloss:0.565115 [INFO random_forest.cc:628] Training of tree 91/1000 (tree index:91) done accuracy:0.8156 logloss:0.56459 [INFO random_forest.cc:628] Training of tree 101/1000 (tree index:99) done accuracy:0.8148 logloss:0.564104 [INFO random_forest.cc:628] Training of tree 111/1000 (tree index:109) done accuracy:0.8172 logloss:0.537417 [INFO random_forest.cc:628] Training of tree 121/1000 (tree index:120) done accuracy:0.8156 logloss:0.524543 [INFO random_forest.cc:628] Training of tree 131/1000 (tree index:132) done accuracy:0.8152 logloss:0.511111 [INFO random_forest.cc:628] Training of tree 141/1000 (tree index:141) done accuracy:0.816 logloss:0.498209 [INFO random_forest.cc:628] Training of tree 151/1000 (tree index:150) done accuracy:0.8192 logloss:0.485477 [INFO random_forest.cc:628] Training of tree 161/1000 (tree index:160) done accuracy:0.8196 logloss:0.472341 [INFO random_forest.cc:628] Training of tree 171/1000 (tree index:171) done accuracy:0.818 logloss:0.459903 [INFO random_forest.cc:628] Training of tree 181/1000 (tree index:182) done accuracy:0.8172 logloss:0.459812 [INFO random_forest.cc:628] Training of tree 191/1000 (tree index:190) done accuracy:0.8192 logloss:0.459588 [INFO random_forest.cc:628] Training of tree 201/1000 (tree index:199) done accuracy:0.818 logloss:0.459855 [INFO random_forest.cc:628] Training of tree 211/1000 (tree index:209) done accuracy:0.8176 logloss:0.459088 [INFO random_forest.cc:628] Training of tree 221/1000 (tree index:221) done accuracy:0.8168 logloss:0.43377 [INFO random_forest.cc:628] Training of tree 231/1000 (tree index:233) done accuracy:0.8196 logloss:0.433567 [INFO random_forest.cc:628] Training of tree 241/1000 (tree index:241) done accuracy:0.8208 logloss:0.434371 [INFO random_forest.cc:628] Training of tree 251/1000 (tree index:250) done accuracy:0.8192 logloss:0.434301 [INFO random_forest.cc:628] Training of tree 261/1000 (tree index:260) done accuracy:0.8172 logloss:0.43402 [INFO random_forest.cc:628] Training of tree 271/1000 (tree index:271) done accuracy:0.818 logloss:0.433583 [INFO random_forest.cc:628] Training of tree 281/1000 (tree index:283) done accuracy:0.8184 logloss:0.420657 [INFO random_forest.cc:628] Training of tree 291/1000 (tree index:291) done accuracy:0.8168 logloss:0.420481 [INFO random_forest.cc:628] Training of tree 301/1000 (tree index:299) done accuracy:0.82 logloss:0.419901 [INFO random_forest.cc:628] Training of tree 311/1000 (tree index:312) done accuracy:0.8188 logloss:0.419881 [INFO random_forest.cc:628] Training of tree 321/1000 (tree index:319) done accuracy:0.8172 logloss:0.419582 [INFO random_forest.cc:628] Training of tree 331/1000 (tree index:332) done accuracy:0.8176 logloss:0.419608 [INFO random_forest.cc:628] Training of tree 341/1000 (tree index:341) done accuracy:0.816 logloss:0.419608 [INFO random_forest.cc:628] Training of tree 351/1000 (tree index:352) done accuracy:0.8152 logloss:0.419729 [INFO random_forest.cc:628] Training of tree 361/1000 (tree index:361) done accuracy:0.8152 logloss:0.419264 [INFO random_forest.cc:628] Training of tree 371/1000 (tree index:369) done accuracy:0.8148 logloss:0.418932 [INFO random_forest.cc:628] Training of tree 381/1000 (tree index:379) done accuracy:0.8156 logloss:0.419148 [INFO random_forest.cc:628] Training of tree 391/1000 (tree index:391) done accuracy:0.8164 logloss:0.419344 [INFO random_forest.cc:628] Training of tree 401/1000 (tree index:398) done accuracy:0.8156 logloss:0.419051 [INFO random_forest.cc:628] Training of tree 411/1000 (tree index:408) done accuracy:0.8168 logloss:0.406486 [INFO random_forest.cc:628] Training of tree 421/1000 (tree index:420) done accuracy:0.8168 logloss:0.406477 [INFO random_forest.cc:628] Training of tree 431/1000 (tree index:430) done accuracy:0.816 logloss:0.406362 [INFO random_forest.cc:628] Training of tree 441/1000 (tree index:440) done accuracy:0.8172 logloss:0.406377 [INFO random_forest.cc:628] Training of tree 451/1000 (tree index:448) done accuracy:0.8176 logloss:0.406083 [INFO random_forest.cc:628] Training of tree 461/1000 (tree index:458) done accuracy:0.8172 logloss:0.406205 [INFO random_forest.cc:628] Training of tree 471/1000 (tree index:474) done accuracy:0.8168 logloss:0.406437 [INFO random_forest.cc:628] Training of tree 481/1000 (tree index:482) done accuracy:0.8184 logloss:0.406287 [INFO random_forest.cc:628] Training of tree 491/1000 (tree index:490) done accuracy:0.8172 logloss:0.40588 [INFO random_forest.cc:628] Training of tree 501/1000 (tree index:498) done accuracy:0.816 logloss:0.406036 [INFO random_forest.cc:628] Training of tree 511/1000 (tree index:508) done accuracy:0.8164 logloss:0.406053 [INFO random_forest.cc:628] Training of tree 521/1000 (tree index:524) done accuracy:0.8168 logloss:0.405945 [INFO random_forest.cc:628] Training of tree 531/1000 (tree index:530) done accuracy:0.816 logloss:0.405778 [INFO random_forest.cc:628] Training of tree 541/1000 (tree index:540) done accuracy:0.8156 logloss:0.405737 [INFO random_forest.cc:628] Training of tree 551/1000 (tree index:552) done accuracy:0.8156 logloss:0.406028 [INFO random_forest.cc:628] Training of tree 561/1000 (tree index:559) done accuracy:0.8164 logloss:0.406081 [INFO random_forest.cc:628] Training of tree 571/1000 (tree index:569) done accuracy:0.8152 logloss:0.405734 [INFO random_forest.cc:628] Training of tree 581/1000 (tree index:579) done accuracy:0.8172 logloss:0.393451 [INFO random_forest.cc:628] Training of tree 591/1000 (tree index:591) done accuracy:0.816 logloss:0.393428 [INFO random_forest.cc:628] Training of tree 601/1000 (tree index:603) done accuracy:0.8156 logloss:0.393545 [INFO random_forest.cc:628] Training of tree 611/1000 (tree index:609) done accuracy:0.8156 logloss:0.3934 [INFO random_forest.cc:628] Training of tree 621/1000 (tree index:620) done accuracy:0.8148 logloss:0.393539 [INFO random_forest.cc:628] Training of tree 631/1000 (tree index:629) done accuracy:0.8156 logloss:0.393731 [INFO random_forest.cc:628] Training of tree 641/1000 (tree index:641) done accuracy:0.8164 logloss:0.39383 [INFO random_forest.cc:628] Training of tree 651/1000 (tree index:649) done accuracy:0.8152 logloss:0.393724 [INFO random_forest.cc:628] Training of tree 661/1000 (tree index:659) done accuracy:0.8152 logloss:0.393764 [INFO random_forest.cc:628] Training of tree 671/1000 (tree index:670) done accuracy:0.816 logloss:0.393834 [INFO random_forest.cc:628] Training of tree 681/1000 (tree index:680) done accuracy:0.8156 logloss:0.393894 [INFO random_forest.cc:628] Training of tree 691/1000 (tree index:689) done accuracy:0.8152 logloss:0.393746 [INFO random_forest.cc:628] Training of tree 701/1000 (tree index:698) done accuracy:0.814 logloss:0.393743 [INFO random_forest.cc:628] Training of tree 711/1000 (tree index:708) done accuracy:0.8152 logloss:0.393294 [INFO random_forest.cc:628] Training of tree 721/1000 (tree index:721) done accuracy:0.816 logloss:0.393451 [INFO random_forest.cc:628] Training of tree 731/1000 (tree index:733) done accuracy:0.8164 logloss:0.393486 [INFO random_forest.cc:628] Training of tree 741/1000 (tree index:739) done accuracy:0.8156 logloss:0.393553 [INFO random_forest.cc:628] Training of tree 751/1000 (tree index:751) done accuracy:0.816 logloss:0.393731 [INFO random_forest.cc:628] Training of tree 761/1000 (tree index:758) done accuracy:0.8172 logloss:0.393635 [INFO random_forest.cc:628] Training of tree 771/1000 (tree index:769) done accuracy:0.8164 logloss:0.393584 [INFO random_forest.cc:628] Training of tree 781/1000 (tree index:779) done accuracy:0.8184 logloss:0.393728 [INFO random_forest.cc:628] Training of tree 791/1000 (tree index:789) done accuracy:0.8192 logloss:0.393858 [INFO random_forest.cc:628] Training of tree 801/1000 (tree index:800) done accuracy:0.8184 logloss:0.381756 [INFO random_forest.cc:628] Training of tree 811/1000 (tree index:813) done accuracy:0.82 logloss:0.38174 [INFO random_forest.cc:628] Training of tree 821/1000 (tree index:819) done accuracy:0.8196 logloss:0.381865 [INFO random_forest.cc:628] Training of tree 831/1000 (tree index:829) done accuracy:0.8172 logloss:0.381929 [INFO random_forest.cc:628] Training of tree 841/1000 (tree index:838) done accuracy:0.8164 logloss:0.382007 [INFO random_forest.cc:628] Training of tree 851/1000 (tree index:850) done accuracy:0.8172 logloss:0.382099 [INFO random_forest.cc:628] Training of tree 861/1000 (tree index:863) done accuracy:0.8172 logloss:0.381937 [INFO random_forest.cc:628] Training of tree 871/1000 (tree index:869) done accuracy:0.8168 logloss:0.382131 [INFO random_forest.cc:628] Training of tree 881/1000 (tree index:879) done accuracy:0.8188 logloss:0.381963 [INFO random_forest.cc:628] Training of tree 891/1000 (tree index:889) done accuracy:0.8192 logloss:0.382052 [INFO random_forest.cc:628] Training of tree 901/1000 (tree index:901) done accuracy:0.8184 logloss:0.382174 [INFO random_forest.cc:628] Training of tree 911/1000 (tree index:913) done accuracy:0.8192 logloss:0.382273 [INFO random_forest.cc:628] Training of tree 921/1000 (tree index:919) done accuracy:0.82 logloss:0.382407 [INFO random_forest.cc:628] Training of tree 931/1000 (tree index:929) done accuracy:0.8216 logloss:0.382277 [INFO random_forest.cc:628] Training of tree 941/1000 (tree index:939) done accuracy:0.8204 logloss:0.382434 [INFO random_forest.cc:628] Training of tree 951/1000 (tree index:951) done accuracy:0.8192 logloss:0.382444 [INFO random_forest.cc:628] Training of tree 961/1000 (tree index:959) done accuracy:0.8192 logloss:0.382497 [INFO random_forest.cc:628] Training of tree 971/1000 (tree index:969) done accuracy:0.8188 logloss:0.382592 [INFO random_forest.cc:628] Training of tree 981/1000 (tree index:979) done accuracy:0.8192 logloss:0.382657 [INFO random_forest.cc:628] Training of tree 991/1000 (tree index:989) done accuracy:0.8188 logloss:0.382671 [INFO random_forest.cc:628] Training of tree 1000/1000 (tree index:997) done accuracy:0.8192 logloss:0.38269 [INFO random_forest.cc:696] Final OOB metrics: accuracy:0.8192 logloss:0.38269 [INFO kernel.cc:828] Export model in log directory: /tmp/tmp0r9hhl7d [INFO kernel.cc:836] Save model in resources [INFO kernel.cc:988] Loading model from path 40/40 [==============================] - 3s 64ms/step [INFO decision_forest.cc:590] Model loaded with 1000 root(s), 324942 node(s), and 10 input feature(s). [INFO kernel.cc:848] Use fast generic engine CPU times: user 21.5 s, sys: 755 ms, total: 22.2 s Wall time: 10.5 s <keras.callbacks.History at 0x7f6b7874c4d0>
و بیایید Decision Forests را به صورت جداگانه ارزیابی کنیم.
model_3.compile(["accuracy"])
model_4.compile(["accuracy"])
evaluation_df3_only = model_3.evaluate(
test_dataset_with_preprocessing, return_dict=True)
evaluation_df4_only = model_4.evaluate(
test_dataset_with_preprocessing, return_dict=True)
print("Accuracy (DF #3 only): ", evaluation_df3_only["accuracy"])
print("Accuracy (DF #4 only): ", evaluation_df4_only["accuracy"])
157/157 [==============================] - 2s 8ms/step - loss: 0.0000e+00 - accuracy: 0.8218 157/157 [==============================] - 1s 8ms/step - loss: 0.0000e+00 - accuracy: 0.8223 Accuracy (DF #3 only): 0.8217999935150146 Accuracy (DF #4 only): 0.8223000168800354
بیایید کل ترکیب مدل را ارزیابی کنیم:
ensemble_nn_and_df.compile(
loss=tf.keras.losses.BinaryCrossentropy(), metrics=["accuracy"])
evaluation_nn_and_df = ensemble_nn_and_df.evaluate(
test_dataset, return_dict=True)
print("Accuracy (2xNN and 2xDF): ", evaluation_nn_and_df["accuracy"])
print("Loss (2xNN and 2xDF): ", evaluation_nn_and_df["loss"])
157/157 [==============================] - 2s 8ms/step - loss: 0.3707 - accuracy: 0.8236 Accuracy (2xNN and 2xDF): 0.8235999941825867 Loss (2xNN and 2xDF): 0.3706760108470917
برای پایان، اجازه دهید لایه شبکه عصبی را کمی بیشتر تنظیم کنیم. توجه داشته باشید که ما جاسازی از قبل آموزشدیده را تنظیم نمیکنیم زیرا مدلهای DF به آن بستگی دارد (مگر اینکه بعد از آن نیز دوباره آنها را آموزش دهیم).
به طور خلاصه، شما دارید:
print(f"Accuracy (NN #1 and #2 only):\t{evaluation_nn_only['accuracy']:.6f}")
print(f"Accuracy (DF #3 only):\t\t{evaluation_df3_only['accuracy']:.6f}")
print(f"Accuracy (DF #4 only):\t\t{evaluation_df4_only['accuracy']:.6f}")
print("----------------------------------------")
print(f"Accuracy (2xNN and 2xDF):\t{evaluation_nn_and_df['accuracy']:.6f}")
def delta_percent(src_eval, key):
src_acc = src_eval["accuracy"]
final_acc = evaluation_nn_and_df["accuracy"]
increase = final_acc - src_acc
print(f"\t\t\t\t {increase:+.6f} over {key}")
delta_percent(evaluation_nn_only, "NN #1 and #2 only")
delta_percent(evaluation_df3_only, "DF #3 only")
delta_percent(evaluation_df4_only, "DF #4 only")
Accuracy (NN #1 and #2 only): 0.820300 Accuracy (DF #3 only): 0.821800 Accuracy (DF #4 only): 0.822300 ---------------------------------------- Accuracy (2xNN and 2xDF): 0.823600 +0.003300 over NN #1 and #2 only +0.001800 over DF #3 only +0.001300 over DF #4 only
در اینجا، می بینید که مدل ترکیب شده بهتر از قطعات جداگانه خود عمل می کند. به همین دلیل است که گروه ها بسیار خوب کار می کنند.
بعدش چی؟
در این مثال، نحوه ترکیب جنگل های تصمیم گیری با شبکه های عصبی را دیدید. یک گام اضافی می تواند آموزش بیشتر شبکه عصبی و جنگل های تصمیم گیری با هم باشد.
علاوه بر این، برای وضوح، جنگلهای تصمیم فقط ورودی از پیش پردازش شده را دریافت کردند. با این حال، جنگل های تصمیم به طور کلی عالی هستند و داده های خام مصرف می کنند. این مدل با تغذیه ویژگیهای خام به مدلهای جنگل تصمیم بهبود مییابد.
در این مثال، مدل نهایی میانگین پیشبینیهای هر مدل است. این راهحل به خوبی کار میکند اگر همه مدلها با همان عملکرد کمتری داشته باشند. با این حال، اگر یکی از مدلهای فرعی بسیار خوب باشد، تجمیع آن با مدلهای دیگر ممکن است واقعاً مضر باشد (یا برعکس؛ برای مثال سعی کنید تعداد نمونهها را از 1k کاهش دهید و ببینید که چگونه به شبکههای عصبی آسیب زیادی میزند. و یا فعال کردن SPARSE_OBLIQUE
تقسیم در مدل جنگل تصادفی دوم).