मशीन लर्निंग में नया? वेब प्रौद्योगिकियों का उपयोग करके एमएल का व्यावहारिक कार्यसाधक ज्ञान प्राप्त करने के लिए एक वीडियो कोर्स
देखें श्रृंखला देखें
संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
TensorFlow.js मॉडल
अपने वेब और ब्राउज़र-आधारित अनुप्रयोगों में कंप्यूटर विज़न, प्राकृतिक भाषा प्रसंस्करण (एनएलपी), और अन्य सामान्य एमएल कार्यों को जोड़ने के लिए पूर्व-प्रशिक्षित मॉडल का अन्वेषण करें।
छवि वर्गीकरण इमेजनेट डेटाबेस (मोबाइलनेट) से लेबल के साथ छवियों को वर्गीकृत करें।
वस्तु का पता लगाना एक ही छवि (कोको एसएसडी) में एकाधिक वस्तुओं को स्थानीयकृत करें और पहचानें।
सरल चेहरे का पता लगाना कस्टम एनकोडर (ब्लेज़फेस) के साथ सिंगल शॉट डिटेक्टर आर्किटेक्चर का उपयोग करके छवियों में चेहरों का पता लगाएं।
फेस लैंडमार्क पहचान मानव चेहरों की अनुमानित सतह ज्यामिति का अनुमान लगाने के लिए 486 3डी चेहरे के स्थलों की भविष्यवाणी करें।
मुद्रा का पता लगाना तीन मॉडलों में से एक का उपयोग करने के लिए एकीकृत पोज़ डिटेक्शन एपीआई जो वास्तविक समय प्रदर्शन के साथ असामान्य पोज़ और तेज़ शरीर गति का पता लगाने में मदद करता है।
शरीर का विभाजन वास्तविक समय में व्यक्ति(व्यक्तियों) और शरीर के अंगों को विभाजित करें।
हाथ की मुद्रा का पता लगाना पाम डिटेक्टर और हाथ-कंकाल फिंगर ट्रैकिंग मॉडल। प्रति खोजे गए हाथ में 21 3डी हाथ कुंजी बिंदुओं की भविष्यवाणी करें।
पाठ विषाक्तता का पता लगाना किसी टिप्पणी का बातचीत पर पड़ने वाले कथित प्रभाव को स्कोर करें, "बहुत विषाक्त" से "बहुत स्वस्थ" (विषाक्तता) तक।
यूनिवर्सल वाक्य एनकोडर भावना वर्गीकरण और पाठ्य समानता (यूनिवर्सल सेंटेंस एनकोडर) जैसे एनएलपी कार्यों के लिए टेक्स्ट को एम्बेडिंग में एनकोड करें।
वाक् आदेश पहचान स्पीच कमांड डेटासेट (स्पीच-कमांड) से 1-सेकंड के ऑडियो स्निपेट को वर्गीकृत करें।
केएनएन क्लासिफायरियर K-निकटतम-पड़ोसी एल्गोरिथ्म का उपयोग करके एक क्लासिफायरियर बनाने की उपयोगिता। ट्रांसफर लर्निंग के लिए इस्तेमाल किया जा सकता है।
[null,null,[],[],[],null,["# TensorFlow.js models\n====================\n\nExplore pre-trained models to add computer vision, natural language processing (NLP), and other common ML tasks to your web and browser-based applications. \n\nVision\n------\n\nAnalyze features in images and videos. Unlock new real-time experiences in the browser. \n[Image classification](https://github.com/tensorflow/tfjs-models/tree/master/mobilenet) \nClassify images with labels from the ImageNet database (MobileNet). \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/mobilenet) \n[Object detection](https://github.com/tensorflow/tfjs-models/tree/master/coco-ssd) \nLocalize and identify multiple objects in a single image (Coco SSD). \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/coco-ssd) \n[Semantic segmentation](https://github.com/tensorflow/tfjs-models/tree/master/deeplab) \nRun semantic segmentation in the browser (DeepLab). \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/deeplab) \n\nBody\n----\n\nDetect key points and poses on the face, hands, and body with models from [MediaPipe](https://google.github.io/mediapipe/solutions/models) and beyond, optimized for JavaScript and Node.js. \n[Simple face detection](https://github.com/tensorflow/tfjs-models/tree/master/face-detection) \nDetect faces in images using a Single Shot Detector architecture with a custom encoder (Blazeface). \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/face-detection) \n[Face landmark detection](https://github.com/tensorflow/tfjs-models/tree/master/face-landmarks-detection) \nPredict 486 3D facial landmarks to infer the approximate surface geometry of human faces. \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/face-landmarks-detection) \n[Pose detection](https://github.com/tensorflow/tfjs-models/tree/master/pose-detection) \nUnified pose detection API for using one of three models that help detect atypical poses and fast body motions with real time performance. \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/pose-detection) \n[Body segmentation](https://github.com/tensorflow/tfjs-models/tree/master/body-segmentation) \nSegment person(s) and body parts in real-time. \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/body-segmentation) \n[Hand pose detection](https://github.com/tensorflow/tfjs-models/tree/master/hand-pose-detection) \nPalm detector and hand-skeleton finger tracking model. Predict 21 3D hand keypoints per detected hand. \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/hand-pose-detection) \n[Portrait depth estimation](https://github.com/tensorflow/tfjs-models/tree/master/depth-estimation) \nEstimate a depth map for a single portrait image of a human. \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/depth-estimation) \n\nText\n----\n\nEnable NLP in your web app using the power of BERT and other Transformer encoder architectures. \n[Natural language question answering](https://github.com/tensorflow/tfjs-models/tree/master/qna) \nAnswer questions based on the content of a given passage of text using BERT. \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/qna) \n[Text toxicity detection](https://github.com/tensorflow/tfjs-models/tree/master/toxicity) \nScore the perceived impact a comment may have on a conversation, from \"Very toxic\" to \"Very healthy\" (Toxicity). \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/toxicity) \n[Universal sentence encoder](https://github.com/tensorflow/tfjs-models/tree/master/universal-sentence-encoder) \nEncode text into embeddings for NLP tasks such as sentiment classification and textual similarity (Universal Sentence Encoder). \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/universal-sentence-encoder) \n\nAudio\n-----\n\nClassify audio to detect sounds and trigger an action in your web app. \n[Speech command recognition](https://github.com/tensorflow/tfjs-models/tree/master/speech-commands) \nClassify 1-second audio snippets from the speech commands dataset (speech-commands). \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/speech-commands) \n\nGeneral\n-------\n\nFind more TensorFlow.js models that can be used out of the box. \n[KNN Classifier](https://github.com/tensorflow/tfjs-models/tree/master/knn-classifier) \nUtility to create a classifier using the K-Nearest-Neighbors algorithm. Can be used for transfer learning. \n[View code](https://github.com/tensorflow/tfjs-models/tree/master/knn-classifier) \n[Explore on GitHub](https://tfhub.dev/s?deployment-format=tfjs) \n\nGet started with TensorFlow.js\n------------------------------\n\n[Explore tutorials](/js/tutorials)"]]