Weź udział w sympozjum Women in ML 7 grudnia Zarejestruj się teraz

TensorFlow Lite wykorzystuje modele TensorFlow przekonwertowane na mniejszy, bardziej wydajny format modelu uczenia maszynowego (ML). Możesz używać wstępnie wytrenowanych modeli z TensorFlow Lite, modyfikować istniejące modele lub budować własne modele TensorFlow, a następnie konwertować je do formatu TensorFlow Lite. Modele TensorFlow Lite mogą wykonać prawie każde zadanie, które może wykonać zwykły model TensorFlow: wykrywanie obiektów, przetwarzanie języka naturalnego, rozpoznawanie wzorców i wiele innych przy użyciu szerokiego zakresu danych wejściowych, w tym obrazów, wideo, audio i tekstu.

Przejdź do sekcji Konwertuj , aby uzyskać informacje na temat uruchamiania modelu z TensorFlow Lite.
Aby uzyskać wskazówki dotyczące pobierania modeli do przypadku użycia, czytaj dalej .

Nie musisz budować modelu TensorFlow Lite, aby zacząć korzystać z uczenia maszynowego na urządzeniach mobilnych lub brzegowych. Wiele już zbudowanych i zoptymalizowanych modeli jest dostępnych do natychmiastowego użycia w aplikacji. Możesz zacząć od używania wstępnie wytrenowanych modeli w TensorFlow Lite i przejść do budowania niestandardowych modeli z biegiem czasu, w następujący sposób:

  1. Rozpocznij opracowywanie funkcji uczenia maszynowego z już wytrenowanymi modelami.
  2. Modyfikuj istniejące modele TensorFlow Lite za pomocą narzędzi takich jak Model Maker .
  3. Zbuduj niestandardowy model za pomocą narzędzi TensorFlow, a następnie przekonwertuj go na TensorFlow Lite.

Jeśli próbujesz szybko zaimplementować funkcje lub zadania użytkowe za pomocą uczenia maszynowego, powinieneś przejrzeć przypadki użycia obsługiwane przez ML Kit przed rozpoczęciem programowania z TensorFlow Lite. To narzędzie programistyczne udostępnia interfejsy API, które można wywoływać bezpośrednio z aplikacji mobilnych, aby wykonywać typowe zadania ML, takie jak skanowanie kodów kreskowych i tłumaczenie na urządzeniu. Korzystanie z tej metody może pomóc w szybkim uzyskaniu wyników. Jednak ML Kit ma ograniczone możliwości rozszerzenia swoich możliwości. Aby uzyskać więcej informacji, zobacz dokumentację dla programistów ML Kit .


Jeśli ostatecznym celem jest zbudowanie niestandardowego modelu dla konkretnego przypadku użycia, powinieneś zacząć od opracowania i trenowania modelu TensorFlow lub rozszerzenia istniejącego. Przed rozpoczęciem procesu opracowywania modelu należy zdawać sobie sprawę z ograniczeń modeli TensorFlow Lite i budować swój model, mając na uwadze te ograniczenia:

  • Ograniczone możliwości obliczeniowe
  • Rozmiar modeli
  • Rozmiar danych
  • Obsługiwane operacje TensorFlow

Aby uzyskać więcej szczegółów na temat każdego z tych ograniczeń, zobacz ograniczenia projektu modelu w omówieniu budowania modelu. Aby uzyskać więcej informacji na temat tworzenia skutecznych, zgodnych modeli o wysokiej wydajności dla TensorFlow Lite, zobacz Najlepsze praktyki dotyczące wydajności .

Dowiedz się, jak wybrać przeszkolony model ML do użycia z TensorFlow Lite.
Użyj TensorFlow Lite Model Maker, aby modyfikować modele przy użyciu danych treningowych.
Dowiedz się, jak tworzyć niestandardowe modele TensorFlow do użycia z TensorFlow Lite.