nsl.configs.make_adv_reg_config
    
    
      
    
    
      
      Stay organized with collections
    
    
      
      Save and categorize content based on your preferences.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
Creates an nsl.configs.AdvRegConfig object.
nsl.configs.make_adv_reg_config(
    multiplier=attr.fields(AdvRegConfig).multiplier.default,
    feature_mask=attr.fields(AdvNeighborConfig).feature_mask.default,
    adv_step_size=attr.fields(AdvNeighborConfig).adv_step_size.default,
    adv_grad_norm=attr.fields(AdvNeighborConfig).adv_grad_norm.default,
    clip_value_min=attr.fields(AdvNeighborConfig).clip_value_min.default,
    clip_value_max=attr.fields(AdvNeighborConfig).clip_value_max.default,
    pgd_iterations=attr.fields(AdvNeighborConfig).pgd_iterations.default,
    pgd_epsilon=attr.fields(AdvNeighborConfig).pgd_epsilon.default,
    random_init=attr.fields(AdvNeighborConfig).random_init.default
)
Used in the notebooks
| Args | 
|---|
| multiplier | multiplier to adversarial regularization loss. Defaults to 0.2. | 
| feature_mask | mask w/ values in [0, 1]applied on the gradient. Its shape
should be the same as (or broadcastable to) that of the input features.
If the input features are in a collection (e.g. list or dictionary), this
field should also be a collection of the same structure. Input features
corresponding to mask values of 0.0 are not perturbed. Setting this
field toNoneis equivalent to setting a mask value of 1.0 for all input
features. | 
| adv_step_size | step size to find the adversarial sample. Defaults to 0.001. | 
| adv_grad_norm | type of tensor norm to normalize the gradient. Input will be
converted to NormTypewhen applicable (e.g., a value of 'l2' will be
converted tonsl.configs.NormType.L2). Defaults to L2 norm. | 
| clip_value_min | minimum value to clip the features after perturbation. The
shape should be the same as (or broadcastable to) input features. If the
input features are in a collection (e.g. list or dictionary), this field
should also be a collection with the same structure. An omitted or None-valued entry in the collection indicates no constraint on the
corresponding feature. | 
| clip_value_max | maximum value to clip the feature after perturbation. (See clip_value_minfor the structure and shape limitations.) | 
| pgd_iterations | number of attack iterations for Projected Gradient Descent
(PGD) attack. Defaults to 1, which resembles the Fast Gradient Sign Method
(FGSM) attack. | 
| pgd_epsilon | radius of the epsilon ball to project back to. Only used in
Projected Gradient Descent (PGD) attack. | 
| random_init | Apply a random perturbation before FGSM/PGD steps. Default set
to Falsefor no random initialization being applied. | 
  
  
 
  
    
    
      
       
    
    
  
  
  Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
  Last updated 2022-10-28 UTC.
  
  
  
    
      [null,null,["Last updated 2022-10-28 UTC."],[],[]]