Ver en TensorFlow.org | Ejecutar en Google Colab | Ver fuente en GitHub | Descargar cuaderno |
Descripción general
Graph regularización es una técnica específica bajo el paradigma más amplio de Neural Graph Learning ( Bui et al., 2018 ). La idea central es entrenar modelos de redes neuronales con un objetivo de regularización de gráficos, aprovechando datos etiquetados y no etiquetados.
En este tutorial, exploraremos el uso de la regularización de gráficos para clasificar documentos que forman un gráfico natural (orgánico).
La receta general para crear un modelo de gráfico regularizado utilizando el marco de aprendizaje estructurado neuronal (NSL) es la siguiente:
- Genere datos de entrenamiento a partir del gráfico de entrada y las funciones de muestra. Los nodos en el gráfico corresponden a muestras y los bordes en el gráfico corresponden a similitudes entre pares de muestras. Los datos de entrenamiento resultantes contendrán características vecinas además de las características originales del nodo.
- Crear una red neuronal como un modelo base con el
Keras
secuencial, o API subclase funcional. - Envolver el modelo de base con el
GraphRegularization
clase de contenedor, que es proporcionado por el marco NSL, para crear un nuevo gráficoKeras
modelo. Este nuevo modelo incluirá un gráfico de pérdida de regularización como término de regularización en su objetivo de entrenamiento. - Capacitar y evaluar la gráfica
Keras
modelo.
Configuración
Instale el paquete Neural Structured Learning.
pip install --quiet neural-structured-learning
Dependencias e importaciones
import neural_structured_learning as nsl
import tensorflow as tf
# Resets notebook state
tf.keras.backend.clear_session()
print("Version: ", tf.__version__)
print("Eager mode: ", tf.executing_eagerly())
print(
"GPU is",
"available" if tf.config.list_physical_devices("GPU") else "NOT AVAILABLE")
Version: 2.8.0-rc0 Eager mode: True GPU is NOT AVAILABLE 2022-01-05 12:39:27.704660: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
Conjunto de datos de Cora
El conjunto de datos Cora es un gráfico citación donde los nodos representan papeles de aprendizaje automático y los bordes representan las citas entre pares de papeles. La tarea involucrada es la clasificación de documentos donde el objetivo es categorizar cada artículo en una de 7 categorías. En otras palabras, este es un problema de clasificación de clases múltiples con 7 clases.
Grafico
La gráfica original está dirigida. Sin embargo, para el propósito de este ejemplo, consideramos la versión no dirigida de este gráfico. Entonces, si el artículo A cita el artículo B, también consideramos que el artículo B ha citado A. Aunque esto no es necesariamente cierto, en este ejemplo, consideramos las citas como un sustituto de la similitud, que generalmente es una propiedad conmutativa.
Características
Cada papel en la entrada contiene efectivamente 2 características:
Palabras: Una densa, múltiples caliente bolsa de representación-de-palabras del texto en el papel. El vocabulario del conjunto de datos de Cora contiene 1433 palabras únicas. Entonces, la longitud de esta característica es 1433, y el valor en la posición 'i' es 0/1, lo que indica si la palabra 'i' en el vocabulario existe en el documento dado o no.
Label: Un solo entero que representa el identificador de clase (categoría) del papel.
Descarga el conjunto de datos de Cora
wget --quiet -P /tmp https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
tar -C /tmp -xvzf /tmp/cora.tgz
cora/ cora/README cora/cora.cites cora/cora.content
Convierta los datos de Cora al formato NSL
Con el fin de procesar previamente el conjunto de datos Cora y convertirlo al formato requerido por el aprendizaje de los nervios estructurado, vamos a ejecutar el script 'preprocess_cora_dataset.py', que se incluye en el repositorio GitHub NSL. Este script hace lo siguiente:
- Genere entidades vecinas utilizando las entidades de nodo originales y el gráfico.
- Generar divisiones de tren y de datos de prueba que contienen
tf.train.Example
casos. - Persistir el tren resultante y los datos de prueba en el
TFRecord
formato.
!wget https://raw.githubusercontent.com/tensorflow/neural-structured-learning/master/neural_structured_learning/examples/preprocess/cora/preprocess_cora_dataset.py
!python preprocess_cora_dataset.py \
--input_cora_content=/tmp/cora/cora.content \
--input_cora_graph=/tmp/cora/cora.cites \
--max_nbrs=5 \
--output_train_data=/tmp/cora/train_merged_examples.tfr \
--output_test_data=/tmp/cora/test_examples.tfr
--2022-01-05 12:39:28-- https://raw.githubusercontent.com/tensorflow/neural-structured-learning/master/neural_structured_learning/examples/preprocess/cora/preprocess_cora_dataset.py Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 11640 (11K) [text/plain] Saving to: ‘preprocess_cora_dataset.py’ preprocess_cora_dat 100%[===================>] 11.37K --.-KB/s in 0s 2022-01-05 12:39:28 (78.9 MB/s) - ‘preprocess_cora_dataset.py’ saved [11640/11640] 2022-01-05 12:39:31.378912: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected Reading graph file: /tmp/cora/cora.cites... Done reading 5429 edges from: /tmp/cora/cora.cites (0.01 seconds). Making all edges bi-directional... Done (0.01 seconds). Total graph nodes: 2708 Joining seed and neighbor tf.train.Examples with graph edges... Done creating and writing 2155 merged tf.train.Examples (1.36 seconds). Out-degree histogram: [(1, 386), (2, 468), (3, 452), (4, 309), (5, 540)] Output training data written to TFRecord file: /tmp/cora/train_merged_examples.tfr. Output test data written to TFRecord file: /tmp/cora/test_examples.tfr. Total running time: 0.04 minutes.
Variables globales
Las rutas de los archivos a los datos del tren y la prueba se basan en los valores de los indicadores de línea de comandos que se utilizan para invocar el script 'preprocess_cora_dataset.py' arriba.
### Experiment dataset
TRAIN_DATA_PATH = '/tmp/cora/train_merged_examples.tfr'
TEST_DATA_PATH = '/tmp/cora/test_examples.tfr'
### Constants used to identify neighbor features in the input.
NBR_FEATURE_PREFIX = 'NL_nbr_'
NBR_WEIGHT_SUFFIX = '_weight'
Hiperparámetros
Vamos a utilizar una instancia de HParams
para incluir varios hiperparámetros y constantes utilizadas para la formación y evaluación. A continuación, describimos brevemente cada uno de ellos:
num_classes: Hay un total de 7 clases diferentes
max_seq_length: Este es el tamaño del vocabulario y todas las instancias en la entrada tiene un multi-caliente, la representación densa bolsa de palabras. En otras palabras, un valor de 1 para una palabra indica que la palabra está presente en la entrada y un valor de 0 indica que no lo está.
distance_type: Esta es la distancia métrica utilizada para regularizar la muestra con sus vecinos.
graph_regularization_multiplier: Esto controla el peso relativo de la expresión gráfica de regularización en la función general de pérdida.
num_neighbors: El número de vecinos usados para la regularización gráfico. Este valor tiene que ser menor o igual a los
max_nbrs
argumento que se utiliza cuando se ejecuta por encima de la línea de comandospreprocess_cora_dataset.py
.num_fc_units: El número de capas totalmente conectados en nuestra red neuronal.
train_epochs: El número de épocas de formación.
El tamaño del lote utilizado para la formación y evaluación: batch_size.
dropout_rate: controla la velocidad de deserción después de cada capa totalmente conectado
eval_steps: El número de lotes a proceso antes considerando la evaluación es completa. Si se establece en
None
, se evalúan todas las instancias en el conjunto de prueba.
class HParams(object):
"""Hyperparameters used for training."""
def __init__(self):
### dataset parameters
self.num_classes = 7
self.max_seq_length = 1433
### neural graph learning parameters
self.distance_type = nsl.configs.DistanceType.L2
self.graph_regularization_multiplier = 0.1
self.num_neighbors = 1
### model architecture
self.num_fc_units = [50, 50]
### training parameters
self.train_epochs = 100
self.batch_size = 128
self.dropout_rate = 0.5
### eval parameters
self.eval_steps = None # All instances in the test set are evaluated.
HPARAMS = HParams()
Tren de carga y datos de prueba
Como se ha descrito anteriormente en este cuaderno, el banco de datos de entrada y las pruebas han sido creados por el 'preprocess_cora_dataset.py'. Vamos a cargarlos en dos tf.data.Dataset
objetos - uno para el tren y uno para la prueba.
En la capa de entrada de nuestro modelo, vamos a extraer no sólo las 'palabras' y la 'etiqueta' características de cada muestra, pero también vecino correspondientes características en base a la hparams.num_neighbors
valor. Instancias con un menor número de vecinos que hparams.num_neighbors
serán asignados ficticia valores relativos a las características vecino que no existen.
def make_dataset(file_path, training=False):
"""Creates a `tf.data.TFRecordDataset`.
Args:
file_path: Name of the file in the `.tfrecord` format containing
`tf.train.Example` objects.
training: Boolean indicating if we are in training mode.
Returns:
An instance of `tf.data.TFRecordDataset` containing the `tf.train.Example`
objects.
"""
def parse_example(example_proto):
"""Extracts relevant fields from the `example_proto`.
Args:
example_proto: An instance of `tf.train.Example`.
Returns:
A pair whose first value is a dictionary containing relevant features
and whose second value contains the ground truth label.
"""
# The 'words' feature is a multi-hot, bag-of-words representation of the
# original raw text. A default value is required for examples that don't
# have the feature.
feature_spec = {
'words':
tf.io.FixedLenFeature([HPARAMS.max_seq_length],
tf.int64,
default_value=tf.constant(
0,
dtype=tf.int64,
shape=[HPARAMS.max_seq_length])),
'label':
tf.io.FixedLenFeature((), tf.int64, default_value=-1),
}
# We also extract corresponding neighbor features in a similar manner to
# the features above during training.
if training:
for i in range(HPARAMS.num_neighbors):
nbr_feature_key = '{}{}_{}'.format(NBR_FEATURE_PREFIX, i, 'words')
nbr_weight_key = '{}{}{}'.format(NBR_FEATURE_PREFIX, i,
NBR_WEIGHT_SUFFIX)
feature_spec[nbr_feature_key] = tf.io.FixedLenFeature(
[HPARAMS.max_seq_length],
tf.int64,
default_value=tf.constant(
0, dtype=tf.int64, shape=[HPARAMS.max_seq_length]))
# We assign a default value of 0.0 for the neighbor weight so that
# graph regularization is done on samples based on their exact number
# of neighbors. In other words, non-existent neighbors are discounted.
feature_spec[nbr_weight_key] = tf.io.FixedLenFeature(
[1], tf.float32, default_value=tf.constant([0.0]))
features = tf.io.parse_single_example(example_proto, feature_spec)
label = features.pop('label')
return features, label
dataset = tf.data.TFRecordDataset([file_path])
if training:
dataset = dataset.shuffle(10000)
dataset = dataset.map(parse_example)
dataset = dataset.batch(HPARAMS.batch_size)
return dataset
train_dataset = make_dataset(TRAIN_DATA_PATH, training=True)
test_dataset = make_dataset(TEST_DATA_PATH)
Echemos un vistazo al conjunto de datos del tren para ver su contenido.
for feature_batch, label_batch in train_dataset.take(1):
print('Feature list:', list(feature_batch.keys()))
print('Batch of inputs:', feature_batch['words'])
nbr_feature_key = '{}{}_{}'.format(NBR_FEATURE_PREFIX, 0, 'words')
nbr_weight_key = '{}{}{}'.format(NBR_FEATURE_PREFIX, 0, NBR_WEIGHT_SUFFIX)
print('Batch of neighbor inputs:', feature_batch[nbr_feature_key])
print('Batch of neighbor weights:',
tf.reshape(feature_batch[nbr_weight_key], [-1]))
print('Batch of labels:', label_batch)
Feature list: ['NL_nbr_0_weight', 'NL_nbr_0_words', 'words'] Batch of inputs: tf.Tensor( [[0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] ... [0 0 0 ... 0 0 0] [0 0 0 ... 1 0 0] [0 0 0 ... 0 0 0]], shape=(128, 1433), dtype=int64) Batch of neighbor inputs: tf.Tensor( [[0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] ... [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0]], shape=(128, 1433), dtype=int64) Batch of neighbor weights: tf.Tensor( [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.], shape=(128,), dtype=float32) Batch of labels: tf.Tensor( [2 2 6 2 0 6 1 3 5 0 1 2 3 6 1 1 0 3 5 2 3 1 4 1 6 1 3 2 2 2 0 3 2 1 3 3 2 3 3 2 3 2 2 0 2 2 6 0 2 1 1 0 5 2 1 4 2 1 2 4 0 2 5 4 3 6 3 2 1 6 2 4 2 2 6 4 6 4 3 5 2 2 2 4 2 2 2 1 2 2 2 4 2 3 6 2 0 6 6 0 2 6 2 1 2 0 1 1 3 2 0 2 0 2 1 1 3 5 2 1 2 5 1 6 2 4 6 4], shape=(128,), dtype=int64)
Echemos un vistazo al conjunto de datos de prueba para ver su contenido.
for feature_batch, label_batch in test_dataset.take(1):
print('Feature list:', list(feature_batch.keys()))
print('Batch of inputs:', feature_batch['words'])
print('Batch of labels:', label_batch)
Feature list: ['words'] Batch of inputs: tf.Tensor( [[0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] ... [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0]], shape=(128, 1433), dtype=int64) Batch of labels: tf.Tensor( [5 2 2 2 1 2 6 3 2 3 6 1 3 6 4 4 2 3 3 0 2 0 5 2 1 0 6 3 6 4 2 2 3 0 4 2 2 2 2 3 2 2 2 0 2 2 2 2 4 2 3 4 0 2 6 2 1 4 2 0 0 1 4 2 6 0 5 2 2 3 2 5 2 5 2 3 2 2 2 2 2 6 6 3 2 4 2 6 3 2 2 6 2 4 2 2 1 3 4 6 0 0 2 4 2 1 3 6 6 2 6 6 6 1 4 6 4 3 6 6 0 0 2 6 2 4 0 0], shape=(128,), dtype=int64)
Definición de modelo
Para demostrar el uso de la regularización de gráficos, primero construimos un modelo base para este problema. Usaremos una red neuronal de avance simple con 2 capas ocultas y abandono en el medio. Nos ilustran la creación del modelo de base con todos los tipos de modelos soportados por el tf.Keras
marco - secuencial, funcional y subclase.
Modelo base secuencial
def make_mlp_sequential_model(hparams):
"""Creates a sequential multi-layer perceptron model."""
model = tf.keras.Sequential()
model.add(
tf.keras.layers.InputLayer(
input_shape=(hparams.max_seq_length,), name='words'))
# Input is already one-hot encoded in the integer format. We cast it to
# floating point format here.
model.add(
tf.keras.layers.Lambda(lambda x: tf.keras.backend.cast(x, tf.float32)))
for num_units in hparams.num_fc_units:
model.add(tf.keras.layers.Dense(num_units, activation='relu'))
# For sequential models, by default, Keras ensures that the 'dropout' layer
# is invoked only during training.
model.add(tf.keras.layers.Dropout(hparams.dropout_rate))
model.add(tf.keras.layers.Dense(hparams.num_classes))
return model
Modelo básico funcional
def make_mlp_functional_model(hparams):
"""Creates a functional API-based multi-layer perceptron model."""
inputs = tf.keras.Input(
shape=(hparams.max_seq_length,), dtype='int64', name='words')
# Input is already one-hot encoded in the integer format. We cast it to
# floating point format here.
cur_layer = tf.keras.layers.Lambda(
lambda x: tf.keras.backend.cast(x, tf.float32))(
inputs)
for num_units in hparams.num_fc_units:
cur_layer = tf.keras.layers.Dense(num_units, activation='relu')(cur_layer)
# For functional models, by default, Keras ensures that the 'dropout' layer
# is invoked only during training.
cur_layer = tf.keras.layers.Dropout(hparams.dropout_rate)(cur_layer)
outputs = tf.keras.layers.Dense(hparams.num_classes)(cur_layer)
model = tf.keras.Model(inputs, outputs=outputs)
return model
Modelo base de subclase
def make_mlp_subclass_model(hparams):
"""Creates a multi-layer perceptron subclass model in Keras."""
class MLP(tf.keras.Model):
"""Subclass model defining a multi-layer perceptron."""
def __init__(self):
super(MLP, self).__init__()
# Input is already one-hot encoded in the integer format. We create a
# layer to cast it to floating point format here.
self.cast_to_float_layer = tf.keras.layers.Lambda(
lambda x: tf.keras.backend.cast(x, tf.float32))
self.dense_layers = [
tf.keras.layers.Dense(num_units, activation='relu')
for num_units in hparams.num_fc_units
]
self.dropout_layer = tf.keras.layers.Dropout(hparams.dropout_rate)
self.output_layer = tf.keras.layers.Dense(hparams.num_classes)
def call(self, inputs, training=False):
cur_layer = self.cast_to_float_layer(inputs['words'])
for dense_layer in self.dense_layers:
cur_layer = dense_layer(cur_layer)
cur_layer = self.dropout_layer(cur_layer, training=training)
outputs = self.output_layer(cur_layer)
return outputs
return MLP()
Crear modelo (s) base
# Create a base MLP model using the functional API.
# Alternatively, you can also create a sequential or subclass base model using
# the make_mlp_sequential_model() or make_mlp_subclass_model() functions
# respectively, defined above. Note that if a subclass model is used, its
# summary cannot be generated until it is built.
base_model_tag, base_model = 'FUNCTIONAL', make_mlp_functional_model(HPARAMS)
base_model.summary()
Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= words (InputLayer) [(None, 1433)] 0 lambda (Lambda) (None, 1433) 0 dense (Dense) (None, 50) 71700 dropout (Dropout) (None, 50) 0 dense_1 (Dense) (None, 50) 2550 dropout_1 (Dropout) (None, 50) 0 dense_2 (Dense) (None, 7) 357 ================================================================= Total params: 74,607 Trainable params: 74,607 Non-trainable params: 0 _________________________________________________________________
Modelo MLP base de tren
# Compile and train the base MLP model
base_model.compile(
optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
base_model.fit(train_dataset, epochs=HPARAMS.train_epochs, verbose=1)
Epoch 1/100 /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/functional.py:559: UserWarning: Input dict contained keys ['NL_nbr_0_weight', 'NL_nbr_0_words'] which did not match any model input. They will be ignored by the model. inputs = self._flatten_to_reference_inputs(inputs) 17/17 [==============================] - 1s 18ms/step - loss: 1.9521 - accuracy: 0.1838 Epoch 2/100 17/17 [==============================] - 0s 3ms/step - loss: 1.8590 - accuracy: 0.3044 Epoch 3/100 17/17 [==============================] - 0s 3ms/step - loss: 1.7770 - accuracy: 0.3601 Epoch 4/100 17/17 [==============================] - 0s 3ms/step - loss: 1.6655 - accuracy: 0.3898 Epoch 5/100 17/17 [==============================] - 0s 3ms/step - loss: 1.5386 - accuracy: 0.4543 Epoch 6/100 17/17 [==============================] - 0s 3ms/step - loss: 1.3856 - accuracy: 0.5077 Epoch 7/100 17/17 [==============================] - 0s 3ms/step - loss: 1.2736 - accuracy: 0.5531 Epoch 8/100 17/17 [==============================] - 0s 3ms/step - loss: 1.1636 - accuracy: 0.5889 Epoch 9/100 17/17 [==============================] - 0s 3ms/step - loss: 1.0654 - accuracy: 0.6385 Epoch 10/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9703 - accuracy: 0.6761 Epoch 11/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8689 - accuracy: 0.7104 Epoch 12/100 17/17 [==============================] - 0s 3ms/step - loss: 0.7704 - accuracy: 0.7494 Epoch 13/100 17/17 [==============================] - 0s 3ms/step - loss: 0.7157 - accuracy: 0.7810 Epoch 14/100 17/17 [==============================] - 0s 3ms/step - loss: 0.6296 - accuracy: 0.8186 Epoch 15/100 17/17 [==============================] - 0s 3ms/step - loss: 0.5932 - accuracy: 0.8167 Epoch 16/100 17/17 [==============================] - 0s 3ms/step - loss: 0.5526 - accuracy: 0.8464 Epoch 17/100 17/17 [==============================] - 0s 3ms/step - loss: 0.5112 - accuracy: 0.8445 Epoch 18/100 17/17 [==============================] - 0s 3ms/step - loss: 0.4624 - accuracy: 0.8613 Epoch 19/100 17/17 [==============================] - 0s 3ms/step - loss: 0.4163 - accuracy: 0.8696 Epoch 20/100 17/17 [==============================] - 0s 3ms/step - loss: 0.3808 - accuracy: 0.8849 Epoch 21/100 17/17 [==============================] - 0s 3ms/step - loss: 0.3564 - accuracy: 0.8933 Epoch 22/100 17/17 [==============================] - 0s 3ms/step - loss: 0.3453 - accuracy: 0.9002 Epoch 23/100 17/17 [==============================] - 0s 3ms/step - loss: 0.3226 - accuracy: 0.9114 Epoch 24/100 17/17 [==============================] - 0s 3ms/step - loss: 0.3058 - accuracy: 0.9151 Epoch 25/100 17/17 [==============================] - 0s 3ms/step - loss: 0.2798 - accuracy: 0.9146 Epoch 26/100 17/17 [==============================] - 0s 3ms/step - loss: 0.2638 - accuracy: 0.9248 Epoch 27/100 17/17 [==============================] - 0s 3ms/step - loss: 0.2538 - accuracy: 0.9290 Epoch 28/100 17/17 [==============================] - 0s 3ms/step - loss: 0.2356 - accuracy: 0.9411 Epoch 29/100 17/17 [==============================] - 0s 3ms/step - loss: 0.2080 - accuracy: 0.9425 Epoch 30/100 17/17 [==============================] - 0s 3ms/step - loss: 0.2172 - accuracy: 0.9364 Epoch 31/100 17/17 [==============================] - 0s 3ms/step - loss: 0.2259 - accuracy: 0.9225 Epoch 32/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1944 - accuracy: 0.9480 Epoch 33/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1892 - accuracy: 0.9434 Epoch 34/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1718 - accuracy: 0.9592 Epoch 35/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1826 - accuracy: 0.9508 Epoch 36/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1585 - accuracy: 0.9559 Epoch 37/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1605 - accuracy: 0.9545 Epoch 38/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1529 - accuracy: 0.9550 Epoch 39/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1411 - accuracy: 0.9615 Epoch 40/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1366 - accuracy: 0.9624 Epoch 41/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1431 - accuracy: 0.9578 Epoch 42/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1241 - accuracy: 0.9619 Epoch 43/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1310 - accuracy: 0.9661 Epoch 44/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1284 - accuracy: 0.9652 Epoch 45/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1215 - accuracy: 0.9633 Epoch 46/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1130 - accuracy: 0.9722 Epoch 47/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1074 - accuracy: 0.9722 Epoch 48/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1143 - accuracy: 0.9694 Epoch 49/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1015 - accuracy: 0.9740 Epoch 50/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1077 - accuracy: 0.9698 Epoch 51/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1035 - accuracy: 0.9684 Epoch 52/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1076 - accuracy: 0.9694 Epoch 53/100 17/17 [==============================] - 0s 3ms/step - loss: 0.1000 - accuracy: 0.9689 Epoch 54/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0967 - accuracy: 0.9749 Epoch 55/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0994 - accuracy: 0.9703 Epoch 56/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0943 - accuracy: 0.9740 Epoch 57/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0923 - accuracy: 0.9735 Epoch 58/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0848 - accuracy: 0.9800 Epoch 59/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0836 - accuracy: 0.9782 Epoch 60/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0913 - accuracy: 0.9735 Epoch 61/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0823 - accuracy: 0.9773 Epoch 62/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0753 - accuracy: 0.9810 Epoch 63/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0746 - accuracy: 0.9777 Epoch 64/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0861 - accuracy: 0.9731 Epoch 65/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0765 - accuracy: 0.9787 Epoch 66/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0750 - accuracy: 0.9791 Epoch 67/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0725 - accuracy: 0.9814 Epoch 68/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0762 - accuracy: 0.9791 Epoch 69/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0645 - accuracy: 0.9842 Epoch 70/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0606 - accuracy: 0.9861 Epoch 71/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0775 - accuracy: 0.9805 Epoch 72/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0655 - accuracy: 0.9800 Epoch 73/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0629 - accuracy: 0.9833 Epoch 74/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0625 - accuracy: 0.9824 Epoch 75/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0607 - accuracy: 0.9838 Epoch 76/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0578 - accuracy: 0.9824 Epoch 77/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0568 - accuracy: 0.9842 Epoch 78/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0595 - accuracy: 0.9833 Epoch 79/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0615 - accuracy: 0.9842 Epoch 80/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0555 - accuracy: 0.9852 Epoch 81/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0517 - accuracy: 0.9870 Epoch 82/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0541 - accuracy: 0.9856 Epoch 83/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0533 - accuracy: 0.9884 Epoch 84/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0509 - accuracy: 0.9838 Epoch 85/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0600 - accuracy: 0.9828 Epoch 86/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0617 - accuracy: 0.9800 Epoch 87/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0599 - accuracy: 0.9800 Epoch 88/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0502 - accuracy: 0.9870 Epoch 89/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0416 - accuracy: 0.9907 Epoch 90/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0542 - accuracy: 0.9842 Epoch 91/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0490 - accuracy: 0.9847 Epoch 92/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0374 - accuracy: 0.9916 Epoch 93/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0467 - accuracy: 0.9893 Epoch 94/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0426 - accuracy: 0.9879 Epoch 95/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0543 - accuracy: 0.9861 Epoch 96/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0420 - accuracy: 0.9870 Epoch 97/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0461 - accuracy: 0.9861 Epoch 98/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0425 - accuracy: 0.9898 Epoch 99/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0406 - accuracy: 0.9907 Epoch 100/100 17/17 [==============================] - 0s 3ms/step - loss: 0.0486 - accuracy: 0.9847 <keras.callbacks.History at 0x7f6f9d5eacd0>
Evaluar el modelo MLP base
# Helper function to print evaluation metrics.
def print_metrics(model_desc, eval_metrics):
"""Prints evaluation metrics.
Args:
model_desc: A description of the model.
eval_metrics: A dictionary mapping metric names to corresponding values. It
must contain the loss and accuracy metrics.
"""
print('\n')
print('Eval accuracy for ', model_desc, ': ', eval_metrics['accuracy'])
print('Eval loss for ', model_desc, ': ', eval_metrics['loss'])
if 'graph_loss' in eval_metrics:
print('Eval graph loss for ', model_desc, ': ', eval_metrics['graph_loss'])
eval_results = dict(
zip(base_model.metrics_names,
base_model.evaluate(test_dataset, steps=HPARAMS.eval_steps)))
print_metrics('Base MLP model', eval_results)
5/5 [==============================] - 0s 5ms/step - loss: 1.4192 - accuracy: 0.7939 Eval accuracy for Base MLP model : 0.7938517332077026 Eval loss for Base MLP model : 1.4192423820495605
Entrene el modelo MLP con regularización de gráficos
La incorporación de regularización gráfico en el término pérdida de una ya existente tf.Keras.Model
requiere sólo unas pocas líneas de código. El modelo base se envuelve para crear una nueva tf.Keras
subclases de modelo, cuya pérdida incluye regularización gráfico.
Para evaluar el beneficio incremental de la regularización de gráficos, crearemos una nueva instancia de modelo base. Esto se debe a base_model
ya se ha entrenado durante unas pocas iteraciones, y la reutilización de este modelo entrenado para crear un modelo gráfico-regularizado no será una comparación justa para base_model
.
# Build a new base MLP model.
base_reg_model_tag, base_reg_model = 'FUNCTIONAL', make_mlp_functional_model(
HPARAMS)
# Wrap the base MLP model with graph regularization.
graph_reg_config = nsl.configs.make_graph_reg_config(
max_neighbors=HPARAMS.num_neighbors,
multiplier=HPARAMS.graph_regularization_multiplier,
distance_type=HPARAMS.distance_type,
sum_over_axis=-1)
graph_reg_model = nsl.keras.GraphRegularization(base_reg_model,
graph_reg_config)
graph_reg_model.compile(
optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
graph_reg_model.fit(train_dataset, epochs=HPARAMS.train_epochs, verbose=1)
Epoch 1/100 /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/indexed_slices.py:446: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/GraphRegularization/graph_loss/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/GraphRegularization/graph_loss/Reshape:0", shape=(None, 7), dtype=float32), dense_shape=Tensor("gradient_tape/GraphRegularization/graph_loss/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory. "shape. This may consume a large amount of memory." % value) 17/17 [==============================] - 2s 4ms/step - loss: 1.9798 - accuracy: 0.1601 - scaled_graph_loss: 0.0373 Epoch 2/100 17/17 [==============================] - 0s 3ms/step - loss: 1.9024 - accuracy: 0.2979 - scaled_graph_loss: 0.0254 Epoch 3/100 17/17 [==============================] - 0s 3ms/step - loss: 1.8623 - accuracy: 0.3160 - scaled_graph_loss: 0.0317 Epoch 4/100 17/17 [==============================] - 0s 3ms/step - loss: 1.8042 - accuracy: 0.3443 - scaled_graph_loss: 0.0498 Epoch 5/100 17/17 [==============================] - 0s 3ms/step - loss: 1.7552 - accuracy: 0.3582 - scaled_graph_loss: 0.0696 Epoch 6/100 17/17 [==============================] - 0s 3ms/step - loss: 1.7012 - accuracy: 0.4084 - scaled_graph_loss: 0.0866 Epoch 7/100 17/17 [==============================] - 0s 3ms/step - loss: 1.6578 - accuracy: 0.4515 - scaled_graph_loss: 0.1114 Epoch 8/100 17/17 [==============================] - 0s 3ms/step - loss: 1.6058 - accuracy: 0.5039 - scaled_graph_loss: 0.1300 Epoch 9/100 17/17 [==============================] - 0s 3ms/step - loss: 1.5498 - accuracy: 0.5434 - scaled_graph_loss: 0.1508 Epoch 10/100 17/17 [==============================] - 0s 3ms/step - loss: 1.5098 - accuracy: 0.6019 - scaled_graph_loss: 0.1651 Epoch 11/100 17/17 [==============================] - 0s 3ms/step - loss: 1.4746 - accuracy: 0.6302 - scaled_graph_loss: 0.1844 Epoch 12/100 17/17 [==============================] - 0s 3ms/step - loss: 1.4315 - accuracy: 0.6520 - scaled_graph_loss: 0.1917 Epoch 13/100 17/17 [==============================] - 0s 3ms/step - loss: 1.3932 - accuracy: 0.6770 - scaled_graph_loss: 0.2024 Epoch 14/100 17/17 [==============================] - 0s 3ms/step - loss: 1.3645 - accuracy: 0.7183 - scaled_graph_loss: 0.2145 Epoch 15/100 17/17 [==============================] - 0s 3ms/step - loss: 1.3265 - accuracy: 0.7369 - scaled_graph_loss: 0.2324 Epoch 16/100 17/17 [==============================] - 0s 3ms/step - loss: 1.3045 - accuracy: 0.7555 - scaled_graph_loss: 0.2358 Epoch 17/100 17/17 [==============================] - 0s 3ms/step - loss: 1.2836 - accuracy: 0.7652 - scaled_graph_loss: 0.2404 Epoch 18/100 17/17 [==============================] - 0s 3ms/step - loss: 1.2456 - accuracy: 0.7898 - scaled_graph_loss: 0.2469 Epoch 19/100 17/17 [==============================] - 0s 3ms/step - loss: 1.2348 - accuracy: 0.8074 - scaled_graph_loss: 0.2615 Epoch 20/100 17/17 [==============================] - 0s 3ms/step - loss: 1.2000 - accuracy: 0.8074 - scaled_graph_loss: 0.2542 Epoch 21/100 17/17 [==============================] - 0s 3ms/step - loss: 1.1994 - accuracy: 0.8260 - scaled_graph_loss: 0.2729 Epoch 22/100 17/17 [==============================] - 0s 3ms/step - loss: 1.1825 - accuracy: 0.8269 - scaled_graph_loss: 0.2676 Epoch 23/100 17/17 [==============================] - 0s 3ms/step - loss: 1.1598 - accuracy: 0.8455 - scaled_graph_loss: 0.2742 Epoch 24/100 17/17 [==============================] - 0s 3ms/step - loss: 1.1543 - accuracy: 0.8534 - scaled_graph_loss: 0.2797 Epoch 25/100 17/17 [==============================] - 0s 3ms/step - loss: 1.1456 - accuracy: 0.8552 - scaled_graph_loss: 0.2714 Epoch 26/100 17/17 [==============================] - 0s 3ms/step - loss: 1.1154 - accuracy: 0.8566 - scaled_graph_loss: 0.2796 Epoch 27/100 17/17 [==============================] - 0s 3ms/step - loss: 1.1150 - accuracy: 0.8687 - scaled_graph_loss: 0.2850 Epoch 28/100 17/17 [==============================] - 0s 3ms/step - loss: 1.1154 - accuracy: 0.8626 - scaled_graph_loss: 0.2772 Epoch 29/100 17/17 [==============================] - 0s 3ms/step - loss: 1.0806 - accuracy: 0.8733 - scaled_graph_loss: 0.2756 Epoch 30/100 17/17 [==============================] - 0s 3ms/step - loss: 1.0828 - accuracy: 0.8626 - scaled_graph_loss: 0.2907 Epoch 31/100 17/17 [==============================] - 0s 3ms/step - loss: 1.0724 - accuracy: 0.8886 - scaled_graph_loss: 0.2834 Epoch 32/100 17/17 [==============================] - 0s 3ms/step - loss: 1.0589 - accuracy: 0.8826 - scaled_graph_loss: 0.2881 Epoch 33/100 17/17 [==============================] - 0s 3ms/step - loss: 1.0490 - accuracy: 0.8872 - scaled_graph_loss: 0.2972 Epoch 34/100 17/17 [==============================] - 0s 3ms/step - loss: 1.0550 - accuracy: 0.8923 - scaled_graph_loss: 0.2935 Epoch 35/100 17/17 [==============================] - 0s 3ms/step - loss: 1.0397 - accuracy: 0.8840 - scaled_graph_loss: 0.2795 Epoch 36/100 17/17 [==============================] - 0s 3ms/step - loss: 1.0360 - accuracy: 0.8891 - scaled_graph_loss: 0.2966 Epoch 37/100 17/17 [==============================] - 0s 3ms/step - loss: 1.0235 - accuracy: 0.8961 - scaled_graph_loss: 0.2890 Epoch 38/100 17/17 [==============================] - 0s 3ms/step - loss: 1.0219 - accuracy: 0.8984 - scaled_graph_loss: 0.2965 Epoch 39/100 17/17 [==============================] - 0s 3ms/step - loss: 1.0168 - accuracy: 0.9044 - scaled_graph_loss: 0.3023 Epoch 40/100 17/17 [==============================] - 0s 3ms/step - loss: 1.0148 - accuracy: 0.9035 - scaled_graph_loss: 0.2984 Epoch 41/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9956 - accuracy: 0.9118 - scaled_graph_loss: 0.2888 Epoch 42/100 17/17 [==============================] - 0s 3ms/step - loss: 1.0019 - accuracy: 0.9021 - scaled_graph_loss: 0.2877 Epoch 43/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9956 - accuracy: 0.9049 - scaled_graph_loss: 0.2912 Epoch 44/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9986 - accuracy: 0.9026 - scaled_graph_loss: 0.3040 Epoch 45/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9939 - accuracy: 0.9067 - scaled_graph_loss: 0.3016 Epoch 46/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9828 - accuracy: 0.9058 - scaled_graph_loss: 0.2877 Epoch 47/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9629 - accuracy: 0.9137 - scaled_graph_loss: 0.2844 Epoch 48/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9645 - accuracy: 0.9146 - scaled_graph_loss: 0.2933 Epoch 49/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9752 - accuracy: 0.9165 - scaled_graph_loss: 0.3013 Epoch 50/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9552 - accuracy: 0.9179 - scaled_graph_loss: 0.2865 Epoch 51/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9539 - accuracy: 0.9193 - scaled_graph_loss: 0.3044 Epoch 52/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9443 - accuracy: 0.9183 - scaled_graph_loss: 0.3010 Epoch 53/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9559 - accuracy: 0.9244 - scaled_graph_loss: 0.2987 Epoch 54/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9497 - accuracy: 0.9225 - scaled_graph_loss: 0.2979 Epoch 55/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9674 - accuracy: 0.9183 - scaled_graph_loss: 0.3034 Epoch 56/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9537 - accuracy: 0.9174 - scaled_graph_loss: 0.2834 Epoch 57/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9341 - accuracy: 0.9188 - scaled_graph_loss: 0.2939 Epoch 58/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9392 - accuracy: 0.9225 - scaled_graph_loss: 0.2998 Epoch 59/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9240 - accuracy: 0.9313 - scaled_graph_loss: 0.3022 Epoch 60/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9368 - accuracy: 0.9267 - scaled_graph_loss: 0.2979 Epoch 61/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9306 - accuracy: 0.9234 - scaled_graph_loss: 0.2952 Epoch 62/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9197 - accuracy: 0.9230 - scaled_graph_loss: 0.2916 Epoch 63/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9360 - accuracy: 0.9206 - scaled_graph_loss: 0.2947 Epoch 64/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9181 - accuracy: 0.9299 - scaled_graph_loss: 0.2996 Epoch 65/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9105 - accuracy: 0.9341 - scaled_graph_loss: 0.2981 Epoch 66/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9014 - accuracy: 0.9323 - scaled_graph_loss: 0.2897 Epoch 67/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9059 - accuracy: 0.9364 - scaled_graph_loss: 0.3083 Epoch 68/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9053 - accuracy: 0.9309 - scaled_graph_loss: 0.2976 Epoch 69/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9099 - accuracy: 0.9258 - scaled_graph_loss: 0.3069 Epoch 70/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9025 - accuracy: 0.9355 - scaled_graph_loss: 0.2890 Epoch 71/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8849 - accuracy: 0.9281 - scaled_graph_loss: 0.2933 Epoch 72/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8959 - accuracy: 0.9323 - scaled_graph_loss: 0.2918 Epoch 73/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9074 - accuracy: 0.9248 - scaled_graph_loss: 0.3065 Epoch 74/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8845 - accuracy: 0.9369 - scaled_graph_loss: 0.2874 Epoch 75/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8873 - accuracy: 0.9401 - scaled_graph_loss: 0.2996 Epoch 76/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8942 - accuracy: 0.9327 - scaled_graph_loss: 0.3086 Epoch 77/100 17/17 [==============================] - 0s 3ms/step - loss: 0.9052 - accuracy: 0.9253 - scaled_graph_loss: 0.2986 Epoch 78/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8811 - accuracy: 0.9336 - scaled_graph_loss: 0.2948 Epoch 79/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8896 - accuracy: 0.9276 - scaled_graph_loss: 0.2919 Epoch 80/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8853 - accuracy: 0.9313 - scaled_graph_loss: 0.2944 Epoch 81/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8875 - accuracy: 0.9323 - scaled_graph_loss: 0.2925 Epoch 82/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8639 - accuracy: 0.9323 - scaled_graph_loss: 0.2967 Epoch 83/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8820 - accuracy: 0.9332 - scaled_graph_loss: 0.3047 Epoch 84/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8752 - accuracy: 0.9346 - scaled_graph_loss: 0.2942 Epoch 85/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8651 - accuracy: 0.9374 - scaled_graph_loss: 0.3066 Epoch 86/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8765 - accuracy: 0.9332 - scaled_graph_loss: 0.2881 Epoch 87/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8691 - accuracy: 0.9420 - scaled_graph_loss: 0.3030 Epoch 88/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8631 - accuracy: 0.9374 - scaled_graph_loss: 0.2916 Epoch 89/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8651 - accuracy: 0.9392 - scaled_graph_loss: 0.3032 Epoch 90/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8632 - accuracy: 0.9420 - scaled_graph_loss: 0.3019 Epoch 91/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8600 - accuracy: 0.9425 - scaled_graph_loss: 0.2965 Epoch 92/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8569 - accuracy: 0.9346 - scaled_graph_loss: 0.2977 Epoch 93/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8704 - accuracy: 0.9374 - scaled_graph_loss: 0.3083 Epoch 94/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8562 - accuracy: 0.9406 - scaled_graph_loss: 0.2883 Epoch 95/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8545 - accuracy: 0.9415 - scaled_graph_loss: 0.3030 Epoch 96/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8592 - accuracy: 0.9332 - scaled_graph_loss: 0.2927 Epoch 97/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8503 - accuracy: 0.9397 - scaled_graph_loss: 0.2927 Epoch 98/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8434 - accuracy: 0.9462 - scaled_graph_loss: 0.2937 Epoch 99/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8578 - accuracy: 0.9374 - scaled_graph_loss: 0.3064 Epoch 100/100 17/17 [==============================] - 0s 3ms/step - loss: 0.8504 - accuracy: 0.9411 - scaled_graph_loss: 0.3043 <keras.callbacks.History at 0x7f70041be650>
Evaluar el modelo MLP con regularización de gráficos
eval_results = dict(
zip(graph_reg_model.metrics_names,
graph_reg_model.evaluate(test_dataset, steps=HPARAMS.eval_steps)))
print_metrics('MLP + graph regularization', eval_results)
5/5 [==============================] - 0s 5ms/step - loss: 0.8884 - accuracy: 0.7957 Eval accuracy for MLP + graph regularization : 0.7956600189208984 Eval loss for MLP + graph regularization : 0.8883611559867859
La exactitud del modelo gráfico-regularizado es de aproximadamente 2-3% más alto que el del modelo de base ( base_model
).
Conclusión
Hemos demostrado el uso de la regularización de gráficos para la clasificación de documentos en un gráfico de citas naturales (Cora) utilizando el marco de aprendizaje estructurado neuronal (NSL). Nuestro tutorial avanzado implica la síntesis de gráficos basados en la formación de incrustaciones de muestra antes de una red neuronal con regularización gráfico. Este enfoque es útil si la entrada no contiene un gráfico explícito.
Alentamos a los usuarios a experimentar más variando la cantidad de supervisión y probando diferentes arquitecturas neuronales para la regularización de gráficos.