Visualizza su TensorFlow.org | Esegui in Google Colab | Visualizza l'origine su GitHub | Scarica quaderno |
TensorFlow Quantum introduce le primitive quantistiche nell'ecosistema TensorFlow. Ora i ricercatori quantistici possono sfruttare gli strumenti di TensorFlow. In questo tutorial darai un'occhiata più da vicino all'incorporazione di TensorBoard nella tua ricerca sull'informatica quantistica. Utilizzando il tutorial DCGAN di TensorFlow creerai rapidamente esperimenti e visualizzazioni di lavoro simili a quelli eseguiti da Niu et al. . In linea di massima:
- Addestra un GAN per produrre campioni che sembrano provenire da circuiti quantistici.
- Visualizza lo stato di avanzamento della formazione e l'evoluzione della distribuzione nel tempo.
- Confronta l'esperimento esplorando il grafo di calcolo.
pip install tensorflow==2.7.0 tensorflow-quantum tensorboard_plugin_profile==2.4.0
# Update package resources to account for version changes.
import importlib, pkg_resources
importlib.reload(pkg_resources)
<module 'pkg_resources' from '/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/pkg_resources/__init__.py'>
#docs_infra: no_execute
%load_ext tensorboard
import datetime
import time
import cirq
import tensorflow as tf
import tensorflow_quantum as tfq
from tensorflow.keras import layers
# visualization tools
%matplotlib inline
import matplotlib.pyplot as plt
from cirq.contrib.svg import SVGCircuit
2022-02-04 12:46:52.770534: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
1. Generazione di dati
Inizia raccogliendo alcuni dati. Puoi utilizzare TensorFlow Quantum per generare rapidamente alcuni campioni di stringhe di bit che saranno l'origine dati principale per il resto dei tuoi esperimenti. Come Niu et al. esplorerai quanto sia facile emulare il campionamento da circuiti casuali con una profondità drasticamente ridotta. Innanzitutto, definisci alcuni aiutanti:
def generate_circuit(qubits):
"""Generate a random circuit on qubits."""
random_circuit = cirq.generate_boixo_2018_supremacy_circuits_v2(
qubits, cz_depth=2, seed=1234)
return random_circuit
def generate_data(circuit, n_samples):
"""Draw n_samples samples from circuit into a tf.Tensor."""
return tf.squeeze(tfq.layers.Sample()(circuit, repetitions=n_samples).to_tensor())
Ora puoi ispezionare il circuito e alcuni dati di esempio:
qubits = cirq.GridQubit.rect(1, 5)
random_circuit_m = generate_circuit(qubits) + cirq.measure_each(*qubits)
SVGCircuit(random_circuit_m)
findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans.
samples = cirq.sample(random_circuit_m, repetitions=10)
print('10 Random bitstrings from this circuit:')
print(samples)
10 Random bitstrings from this circuit: (0, 0)=1000001000 (0, 1)=0000001010 (0, 2)=1010000100 (0, 3)=0010000110 (0, 4)=0110110010
Puoi fare la stessa cosa in TensorFlow Quantum con:
generate_data(random_circuit_m, 10)
<tf.Tensor: shape=(10, 5), dtype=int8, numpy= array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 1, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 1, 0], [1, 1, 1, 0, 0], [1, 1, 1, 0, 0]], dtype=int8)>
Ora puoi generare rapidamente i tuoi dati di allenamento con:
N_SAMPLES = 60000
N_QUBITS = 10
QUBITS = cirq.GridQubit.rect(1, N_QUBITS)
REFERENCE_CIRCUIT = generate_circuit(QUBITS)
all_data = generate_data(REFERENCE_CIRCUIT, N_SAMPLES)
all_data
<tf.Tensor: shape=(60000, 10), dtype=int8, numpy= array([[0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], ..., [1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]], dtype=int8)>
Sarà utile definire alcune funzioni di supporto da visualizzare durante l'allenamento. Due quantità interessanti da utilizzare sono:
- I valori interi dei campioni, in modo da poter creare istogrammi della distribuzione.
- La stima lineare della fedeltà XEB di un insieme di campioni, per dare qualche indicazione di quanto siano "veramente quantistici casuali" i campioni.
@tf.function
def bits_to_ints(bits):
"""Convert tensor of bitstrings to tensor of ints."""
sigs = tf.constant([1 << i for i in range(N_QUBITS)], dtype=tf.int32)
rounded_bits = tf.clip_by_value(tf.math.round(
tf.cast(bits, dtype=tf.dtypes.float32)), clip_value_min=0, clip_value_max=1)
return tf.einsum('jk,k->j', tf.cast(rounded_bits, dtype=tf.dtypes.int32), sigs)
@tf.function
def xeb_fid(bits):
"""Compute linear XEB fidelity of bitstrings."""
final_probs = tf.squeeze(
tf.abs(tfq.layers.State()(REFERENCE_CIRCUIT).to_tensor()) ** 2)
nums = bits_to_ints(bits)
return (2 ** N_QUBITS) * tf.reduce_mean(tf.gather(final_probs, nums)) - 1.0
Qui puoi visualizzare la distribuzione e il controllo di integrità utilizzando XEB:
plt.hist(bits_to_ints(all_data).numpy(), 50)
plt.show()
xeb_fid(all_data)
<tf.Tensor: shape=(), dtype=float32, numpy=-0.0015467405>
2. Costruisci un modello
Qui puoi utilizzare i componenti rilevanti del tutorial DCGAN per il caso quantistico. Invece di produrre cifre MNIST, il nuovo GAN verrà utilizzato per produrre campioni di stringhe di bit con lunghezza N_QUBITS
LATENT_DIM = 100
def make_generator_model():
"""Construct generator model."""
model = tf.keras.Sequential()
model.add(layers.Dense(256, use_bias=False, input_shape=(LATENT_DIM,)))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dropout(0.3))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(N_QUBITS, activation='relu'))
return model
def make_discriminator_model():
"""Constrcut discriminator model."""
model = tf.keras.Sequential()
model.add(layers.Dense(256, use_bias=False, input_shape=(N_QUBITS,)))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dropout(0.3))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(1))
return model
Quindi, istanzia i tuoi modelli generatore e discriminatore, definisci le perdite e crea la funzione train_step
da utilizzare per il tuo ciclo di allenamento principale:
discriminator = make_discriminator_model()
generator = make_generator_model()
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
"""Compute discriminator loss."""
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
"""Compute generator loss."""
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
BATCH_SIZE=256
@tf.function
def train_step(images):
"""Run train step on provided image batch."""
noise = tf.random.normal([BATCH_SIZE, LATENT_DIM])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(
gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(
disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(
zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(
zip(gradients_of_discriminator, discriminator.trainable_variables))
return gen_loss, disc_loss
Ora che hai tutti gli elementi costitutivi necessari per il tuo modello, puoi impostare una funzione di addestramento che incorpori la visualizzazione TensorBoard. Per prima cosa imposta un filewriter TensorBoard:
logdir = "tb_logs/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
file_writer = tf.summary.create_file_writer(logdir + "/metrics")
file_writer.set_as_default()
Usando il modulo tf.summary
, ora puoi incorporare scalar
, histogram
(così come altro) registrazione su TensorBoard all'interno della funzione del train
principale:
def train(dataset, epochs, start_epoch=1):
"""Launch full training run for the given number of epochs."""
# Log original training distribution.
tf.summary.histogram('Training Distribution', data=bits_to_ints(dataset), step=0)
batched_data = tf.data.Dataset.from_tensor_slices(dataset).shuffle(N_SAMPLES).batch(512)
t = time.time()
for epoch in range(start_epoch, start_epoch + epochs):
for i, image_batch in enumerate(batched_data):
# Log batch-wise loss.
gl, dl = train_step(image_batch)
tf.summary.scalar(
'Generator loss', data=gl, step=epoch * len(batched_data) + i)
tf.summary.scalar(
'Discriminator loss', data=dl, step=epoch * len(batched_data) + i)
# Log full dataset XEB Fidelity and generated distribution.
generated_samples = generator(tf.random.normal([N_SAMPLES, 100]))
tf.summary.scalar(
'Generator XEB Fidelity Estimate', data=xeb_fid(generated_samples), step=epoch)
tf.summary.histogram(
'Generator distribution', data=bits_to_ints(generated_samples), step=epoch)
# Log new samples drawn from this particular random circuit.
random_new_distribution = generate_data(REFERENCE_CIRCUIT, N_SAMPLES)
tf.summary.histogram(
'New round of True samples', data=bits_to_ints(random_new_distribution), step=epoch)
if epoch % 10 == 0:
print('Epoch {}, took {}(s)'.format(epoch, time.time() - t))
t = time.time()
3. Visualizza formazione e prestazioni
La dashboard di TensorBoard può ora essere avviata con:
#docs_infra: no_execute
%tensorboard --logdir tb_logs/
Quando si chiama il training, il dashboard di train
si aggiornerà automaticamente con tutte le statistiche di riepilogo fornite nel ciclo di training.
train(all_data, epochs=50)
Epoch 10, took 9.325464487075806(s) Epoch 20, took 7.684147119522095(s) Epoch 30, took 7.508770704269409(s) Epoch 40, took 7.5157341957092285(s) Epoch 50, took 7.533370494842529(s)
Mentre l'allenamento è in corso (e una volta completato) puoi esaminare le quantità scalari:
Passando alla scheda dell'istogramma puoi anche vedere quanto bene la rete del generatore ricrea i campioni dalla distribuzione quantistica:
Oltre a consentire il monitoraggio in tempo reale delle statistiche di riepilogo relative al tuo esperimento, TensorBoard può anche aiutarti a profilare i tuoi esperimenti per identificare i colli di bottiglia delle prestazioni. Per rieseguire il tuo modello con il monitoraggio delle prestazioni puoi fare:
tf.profiler.experimental.start(logdir)
train(all_data, epochs=10, start_epoch=50)
tf.profiler.experimental.stop()
Epoch 50, took 0.8879530429840088(s)
TensorBoard profila tutto il codice tra tf.profiler.experimental.start
e tf.profiler.experimental.stop
. Questi dati del profilo possono quindi essere visualizzati nella pagina del profile
di TensorBoard:
Prova ad aumentare la profondità o a sperimentare diverse classi di circuiti quantistici. Scopri tutte le altre fantastiche funzionalità di TensorBoard come l' ottimizzazione degli iperparametri che puoi incorporare nei tuoi esperimenti TensorFlow Quantum.