Aiuto proteggere la Grande Barriera Corallina con tensorflow sul Kaggle Join Sfida

Set di dati TensorFlow

TFDS fornisce una raccolta di set di dati pronti per l'uso da utilizzare con TensorFlow, Jax e altri framework di Machine Learning.

Gestisce il download e la preparazione dei dati in modo deterministico e costruendo una tf.data.Dataset (o np.array ).

Visualizza su TensorFlow.org Visualizza la fonte su GitHub Scarica taccuino

Installazione

TFDS esiste in due pacchetti:

  • pip install tensorflow-datasets : La versione stabile, rilasciata ogni pochi mesi.
  • pip install tfds-nightly : Usciti tutti i giorni, contiene le ultime versioni dei set di dati.

Questo CoLab utilizza tfds-nightly :

pip install -q tfds-nightly tensorflow matplotlib
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

import tensorflow_datasets as tfds

Trova set di dati disponibili

Tutti i costruttori di set di dati sono sottoclasse di tfds.core.DatasetBuilder . Per ottenere l'elenco dei costruttori disponibili, utilizzare tfds.list_builders() o sguardo al nostro catalogo .

tfds.list_builders()
['abstract_reasoning',
 'accentdb',
 'aeslc',
 'aflw2k3d',
 'ag_news_subset',
 'ai2_arc',
 'ai2_arc_with_ir',
 'amazon_us_reviews',
 'anli',
 'arc',
 'bair_robot_pushing_small',
 'bccd',
 'beans',
 'big_patent',
 'bigearthnet',
 'billsum',
 'binarized_mnist',
 'binary_alpha_digits',
 'blimp',
 'booksum',
 'bool_q',
 'c4',
 'caltech101',
 'caltech_birds2010',
 'caltech_birds2011',
 'cars196',
 'cassava',
 'cats_vs_dogs',
 'celeb_a',
 'celeb_a_hq',
 'cfq',
 'cherry_blossoms',
 'chexpert',
 'cifar10',
 'cifar100',
 'cifar10_1',
 'cifar10_corrupted',
 'citrus_leaves',
 'cityscapes',
 'civil_comments',
 'clevr',
 'clic',
 'clinc_oos',
 'cmaterdb',
 'cnn_dailymail',
 'coco',
 'coco_captions',
 'coil100',
 'colorectal_histology',
 'colorectal_histology_large',
 'common_voice',
 'coqa',
 'cos_e',
 'cosmos_qa',
 'covid19',
 'covid19sum',
 'crema_d',
 'curated_breast_imaging_ddsm',
 'cycle_gan',
 'd4rl_adroit_door',
 'd4rl_adroit_hammer',
 'd4rl_adroit_pen',
 'd4rl_adroit_relocate',
 'd4rl_mujoco_ant',
 'd4rl_mujoco_halfcheetah',
 'd4rl_mujoco_hopper',
 'd4rl_mujoco_walker2d',
 'dart',
 'davis',
 'deep_weeds',
 'definite_pronoun_resolution',
 'dementiabank',
 'diabetic_retinopathy_detection',
 'div2k',
 'dmlab',
 'doc_nli',
 'dolphin_number_word',
 'downsampled_imagenet',
 'drop',
 'dsprites',
 'dtd',
 'duke_ultrasound',
 'e2e_cleaned',
 'efron_morris75',
 'emnist',
 'eraser_multi_rc',
 'esnli',
 'eurosat',
 'fashion_mnist',
 'flic',
 'flores',
 'food101',
 'forest_fires',
 'fuss',
 'gap',
 'geirhos_conflict_stimuli',
 'gem',
 'genomics_ood',
 'german_credit_numeric',
 'gigaword',
 'glue',
 'goemotions',
 'gpt3',
 'gref',
 'groove',
 'gtzan',
 'gtzan_music_speech',
 'hellaswag',
 'higgs',
 'horses_or_humans',
 'howell',
 'i_naturalist2017',
 'imagenet2012',
 'imagenet2012_corrupted',
 'imagenet2012_multilabel',
 'imagenet2012_real',
 'imagenet2012_subset',
 'imagenet_a',
 'imagenet_r',
 'imagenet_resized',
 'imagenet_v2',
 'imagenette',
 'imagewang',
 'imdb_reviews',
 'irc_disentanglement',
 'iris',
 'kddcup99',
 'kitti',
 'kmnist',
 'lambada',
 'lfw',
 'librispeech',
 'librispeech_lm',
 'libritts',
 'ljspeech',
 'lm1b',
 'lost_and_found',
 'lsun',
 'lvis',
 'malaria',
 'math_dataset',
 'mctaco',
 'mlqa',
 'mnist',
 'mnist_corrupted',
 'movie_lens',
 'movie_rationales',
 'movielens',
 'moving_mnist',
 'multi_news',
 'multi_nli',
 'multi_nli_mismatch',
 'natural_questions',
 'natural_questions_open',
 'newsroom',
 'nsynth',
 'nyu_depth_v2',
 'ogbg_molpcba',
 'omniglot',
 'open_images_challenge2019_detection',
 'open_images_v4',
 'openbookqa',
 'opinion_abstracts',
 'opinosis',
 'opus',
 'oxford_flowers102',
 'oxford_iiit_pet',
 'para_crawl',
 'patch_camelyon',
 'paws_wiki',
 'paws_x_wiki',
 'penguins',
 'pet_finder',
 'pg19',
 'piqa',
 'places365_small',
 'plant_leaves',
 'plant_village',
 'plantae_k',
 'protein_net',
 'qa4mre',
 'qasc',
 'quac',
 'quickdraw_bitmap',
 'race',
 'radon',
 'reddit',
 'reddit_disentanglement',
 'reddit_tifu',
 'ref_coco',
 'resisc45',
 'rlu_atari',
 'rlu_dmlab_explore_object_rewards_few',
 'rlu_dmlab_explore_object_rewards_many',
 'rlu_dmlab_rooms_select_nonmatching_object',
 'rlu_dmlab_rooms_watermaze',
 'rlu_dmlab_seekavoid_arena01',
 'rlu_rwrl',
 'robonet',
 'robosuite_panda_pick_place_can',
 'rock_paper_scissors',
 'rock_you',
 's3o4d',
 'salient_span_wikipedia',
 'samsum',
 'savee',
 'scan',
 'scene_parse150',
 'schema_guided_dialogue',
 'scicite',
 'scientific_papers',
 'sentiment140',
 'shapes3d',
 'siscore',
 'smallnorb',
 'snli',
 'so2sat',
 'speech_commands',
 'spoken_digit',
 'squad',
 'stanford_dogs',
 'stanford_online_products',
 'star_cfq',
 'starcraft_video',
 'stl10',
 'story_cloze',
 'summscreen',
 'sun397',
 'super_glue',
 'svhn_cropped',
 'symmetric_solids',
 'tao',
 'ted_hrlr_translate',
 'ted_multi_translate',
 'tedlium',
 'tf_flowers',
 'the300w_lp',
 'tiny_shakespeare',
 'titanic',
 'trec',
 'trivia_qa',
 'tydi_qa',
 'uc_merced',
 'ucf101',
 'vctk',
 'visual_domain_decathlon',
 'voc',
 'voxceleb',
 'voxforge',
 'waymo_open_dataset',
 'web_nlg',
 'web_questions',
 'wider_face',
 'wiki40b',
 'wiki_bio',
 'wiki_table_questions',
 'wiki_table_text',
 'wikiann',
 'wikihow',
 'wikipedia',
 'wikipedia_toxicity_subtypes',
 'wine_quality',
 'winogrande',
 'wmt13_translate',
 'wmt14_translate',
 'wmt15_translate',
 'wmt16_translate',
 'wmt17_translate',
 'wmt18_translate',
 'wmt19_translate',
 'wmt_t2t_translate',
 'wmt_translate',
 'wordnet',
 'wsc273',
 'xnli',
 'xquad',
 'xsum',
 'xtreme_pawsx',
 'xtreme_xnli',
 'yelp_polarity_reviews',
 'yes_no',
 'youtube_vis',
 'huggingface:acronym_identification',
 'huggingface:ade_corpus_v2',
 'huggingface:adversarial_qa',
 'huggingface:aeslc',
 'huggingface:afrikaans_ner_corpus',
 'huggingface:ag_news',
 'huggingface:ai2_arc',
 'huggingface:air_dialogue',
 'huggingface:ajgt_twitter_ar',
 'huggingface:allegro_reviews',
 'huggingface:allocine',
 'huggingface:alt',
 'huggingface:amazon_polarity',
 'huggingface:amazon_reviews_multi',
 'huggingface:amazon_us_reviews',
 'huggingface:ambig_qa',
 'huggingface:amttl',
 'huggingface:anli',
 'huggingface:app_reviews',
 'huggingface:aqua_rat',
 'huggingface:aquamuse',
 'huggingface:ar_cov19',
 'huggingface:ar_res_reviews',
 'huggingface:ar_sarcasm',
 'huggingface:arabic_billion_words',
 'huggingface:arabic_pos_dialect',
 'huggingface:arabic_speech_corpus',
 'huggingface:arcd',
 'huggingface:arsentd_lev',
 'huggingface:art',
 'huggingface:arxiv_dataset',
 'huggingface:aslg_pc12',
 'huggingface:asnq',
 'huggingface:asset',
 'huggingface:assin',
 'huggingface:assin2',
 'huggingface:atomic',
 'huggingface:autshumato',
 'huggingface:bbc_hindi_nli',
 'huggingface:bc2gm_corpus',
 'huggingface:best2009',
 'huggingface:bianet',
 'huggingface:bible_para',
 'huggingface:big_patent',
 'huggingface:billsum',
 'huggingface:bing_coronavirus_query_set',
 'huggingface:biomrc',
 'huggingface:blended_skill_talk',
 'huggingface:blimp',
 'huggingface:blog_authorship_corpus',
 'huggingface:bn_hate_speech',
 'huggingface:bookcorpus',
 'huggingface:bookcorpusopen',
 'huggingface:boolq',
 'huggingface:bprec',
 'huggingface:break_data',
 'huggingface:brwac',
 'huggingface:bsd_ja_en',
 'huggingface:bswac',
 'huggingface:c3',
 'huggingface:c4',
 'huggingface:cail2018',
 'huggingface:caner',
 'huggingface:capes',
 'huggingface:catalonia_independence',
 'huggingface:cawac',
 'huggingface:cc100',
 'huggingface:cc_news',
 'huggingface:cdsc',
 'huggingface:cdt',
 'huggingface:cfq',
 'huggingface:chr_en',
 'huggingface:cifar10',
 'huggingface:cifar100',
 'huggingface:circa',
 'huggingface:civil_comments',
 'huggingface:clickbait_news_bg',
 'huggingface:climate_fever',
 'huggingface:clinc_oos',
 'huggingface:clue',
 'huggingface:cmrc2018',
 'huggingface:cnn_dailymail',
 'huggingface:coached_conv_pref',
 'huggingface:coarse_discourse',
 'huggingface:codah',
 'huggingface:code_search_net',
 'huggingface:com_qa',
 'huggingface:common_gen',
 'huggingface:commonsense_qa',
 'huggingface:compguesswhat',
 'huggingface:conceptnet5',
 'huggingface:conll2000',
 'huggingface:conll2002',
 'huggingface:conll2003',
 'huggingface:conv_ai',
 'huggingface:conv_ai_2',
 'huggingface:conv_ai_3',
 'huggingface:coqa',
 'huggingface:cord19',
 'huggingface:cornell_movie_dialog',
 'huggingface:cos_e',
 'huggingface:cosmos_qa',
 'huggingface:counter',
 'huggingface:covid_qa_castorini',
 'huggingface:covid_qa_deepset',
 'huggingface:covid_qa_ucsd',
 'huggingface:covid_tweets_japanese',
 'huggingface:craigslist_bargains',
 'huggingface:crawl_domain',
 'huggingface:crd3',
 'huggingface:crime_and_punish',
 'huggingface:crows_pairs',
 'huggingface:cs_restaurants',
 'huggingface:curiosity_dialogs',
 'huggingface:daily_dialog',
 'huggingface:dane',
 'huggingface:danish_political_comments',
 'huggingface:dart',
 'huggingface:datacommons_factcheck',
 'huggingface:dbpedia_14',
 'huggingface:dbrd',
 'huggingface:deal_or_no_dialog',
 'huggingface:definite_pronoun_resolution',
 'huggingface:dengue_filipino',
 'huggingface:dialog_re',
 'huggingface:diplomacy_detection',
 'huggingface:disaster_response_messages',
 'huggingface:discofuse',
 'huggingface:discovery',
 'huggingface:doc2dial',
 'huggingface:docred',
 'huggingface:doqa',
 'huggingface:dream',
 'huggingface:drop',
 'huggingface:duorc',
 'huggingface:dutch_social',
 'huggingface:dyk',
 'huggingface:e2e_nlg',
 'huggingface:e2e_nlg_cleaned',
 'huggingface:ecb',
 'huggingface:ehealth_kd',
 'huggingface:eitb_parcc',
 'huggingface:eli5',
 'huggingface:emea',
 'huggingface:emo',
 'huggingface:emotion',
 'huggingface:emotone_ar',
 'huggingface:empathetic_dialogues',
 'huggingface:enriched_web_nlg',
 'huggingface:eraser_multi_rc',
 'huggingface:esnli',
 'huggingface:eth_py150_open',
 'huggingface:ethos',
 'huggingface:euronews',
 'huggingface:europa_eac_tm',
 'huggingface:europa_ecdc_tm',
 'huggingface:event2Mind',
 'huggingface:evidence_infer_treatment',
 'huggingface:exams',
 'huggingface:factckbr',
 'huggingface:fake_news_english',
 'huggingface:fake_news_filipino',
 'huggingface:farsi_news',
 'huggingface:fever',
 'huggingface:finer',
 'huggingface:flores',
 'huggingface:flue',
 'huggingface:fquad',
 'huggingface:freebase_qa',
 'huggingface:gap',
 'huggingface:gem',
 'huggingface:generated_reviews_enth',
 'huggingface:generics_kb',
 'huggingface:german_legal_entity_recognition',
 'huggingface:germaner',
 'huggingface:germeval_14',
 'huggingface:giga_fren',
 'huggingface:gigaword',
 'huggingface:glucose',
 'huggingface:glue',
 'huggingface:gnad10',
 'huggingface:go_emotions',
 'huggingface:google_wellformed_query',
 'huggingface:grail_qa',
 'huggingface:great_code',
 'huggingface:guardian_authorship',
 'huggingface:gutenberg_time',
 'huggingface:hans',
 'huggingface:hansards',
 'huggingface:hard',
 'huggingface:harem',
 'huggingface:has_part',
 'huggingface:hate_offensive',
 'huggingface:hate_speech18',
 'huggingface:hate_speech_filipino',
 'huggingface:hate_speech_offensive',
 'huggingface:hate_speech_pl',
 'huggingface:hate_speech_portuguese',
 'huggingface:hatexplain',
 'huggingface:hausa_voa_ner',
 'huggingface:hausa_voa_topics',
 'huggingface:hda_nli_hindi',
 'huggingface:head_qa',
 'huggingface:health_fact',
 'huggingface:hebrew_projectbenyehuda',
 'huggingface:hebrew_sentiment',
 'huggingface:hebrew_this_world',
 'huggingface:hellaswag',
 'huggingface:hind_encorp',
 'huggingface:hindi_discourse',
 'huggingface:hippocorpus',
 'huggingface:hkcancor',
 'huggingface:hope_edi',
 'huggingface:hotpot_qa',
 'huggingface:hover',
 'huggingface:hrenwac_para',
 'huggingface:hrwac',
 'huggingface:humicroedit',
 'huggingface:hybrid_qa',
 'huggingface:hyperpartisan_news_detection',
 'huggingface:id_clickbait',
 'huggingface:id_liputan6',
 'huggingface:id_nergrit_corpus',
 'huggingface:id_newspapers_2018',
 'huggingface:id_panl_bppt',
 'huggingface:id_puisi',
 'huggingface:igbo_english_machine_translation',
 'huggingface:igbo_monolingual',
 'huggingface:igbo_ner',
 'huggingface:ilist',
 'huggingface:imdb',
 'huggingface:imdb_urdu_reviews',
 'huggingface:imppres',
 'huggingface:indic_glue',
 'huggingface:indonlu',
 'huggingface:inquisitive_qg',
 'huggingface:interpress_news_category_tr',
 'huggingface:irc_disentangle',
 'huggingface:isixhosa_ner_corpus',
 'huggingface:isizulu_ner_corpus',
 'huggingface:iwslt2017',
 'huggingface:jeopardy',
 'huggingface:jfleg',
 'huggingface:jigsaw_toxicity_pred',
 'huggingface:jnlpba',
 'huggingface:journalists_questions',
 'huggingface:kannada_news',
 'huggingface:kd_conv',
 'huggingface:kde4',
 'huggingface:kelm',
 'huggingface:kilt_tasks',
 'huggingface:kilt_wikipedia',
 'huggingface:kinnews_kirnews',
 'huggingface:kor_3i4k',
 'huggingface:kor_hate',
 'huggingface:kor_ner',
 'huggingface:kor_nli',
 'huggingface:kor_nlu',
 'huggingface:kor_qpair',
 'huggingface:kor_sae',
 'huggingface:kor_sarcasm',
 'huggingface:labr',
 'huggingface:lama',
 'huggingface:lambada',
 'huggingface:large_spanish_corpus',
 'huggingface:lc_quad',
 'huggingface:lener_br',
 'huggingface:liar',
 'huggingface:librispeech_asr',
 'huggingface:librispeech_lm',
 'huggingface:limit',
 'huggingface:lince',
 'huggingface:linnaeus',
 'huggingface:liveqa',
 'huggingface:lj_speech',
 'huggingface:lm1b',
 'huggingface:lst20',
 'huggingface:mac_morpho',
 'huggingface:makhzan',
 'huggingface:math_dataset',
 'huggingface:math_qa',
 'huggingface:matinf',
 'huggingface:mc_taco',
 'huggingface:md_gender_bias',
 'huggingface:med_hop',
 'huggingface:medal',
 'huggingface:medical_dialog',
 'huggingface:medical_questions_pairs',
 'huggingface:menyo20k_mt',
 'huggingface:meta_woz',
 'huggingface:metooma',
 'huggingface:metrec',
 'huggingface:mkb',
 'huggingface:mkqa',
 'huggingface:mlqa',
 'huggingface:mlsum',
 'huggingface:mnist',
 'huggingface:mocha',
 'huggingface:movie_rationales',
 'huggingface:mrqa',
 'huggingface:ms_marco',
 'huggingface:ms_terms',
 'huggingface:msr_genomics_kbcomp',
 'huggingface:msr_sqa',
 'huggingface:msr_text_compression',
 'huggingface:msr_zhen_translation_parity',
 'huggingface:msra_ner',
 'huggingface:mt_eng_vietnamese',
 'huggingface:muchocine',
 'huggingface:multi_booked',
 'huggingface:multi_news',
 'huggingface:multi_nli',
 'huggingface:multi_nli_mismatch',
 'huggingface:multi_para_crawl',
 'huggingface:multi_re_qa',
 'huggingface:multi_woz_v22',
 'huggingface:multi_x_science_sum',
 'huggingface:mutual_friends',
 'huggingface:mwsc',
 'huggingface:myanmar_news',
 'huggingface:narrativeqa',
 'huggingface:narrativeqa_manual',
 'huggingface:natural_questions',
 'huggingface:ncbi_disease',
 'huggingface:nchlt',
 'huggingface:ncslgr',
 'huggingface:nell',
 'huggingface:neural_code_search',
 'huggingface:news_commentary',
 'huggingface:newsgroup',
 'huggingface:newsph',
 'huggingface:newsph_nli',
 'huggingface:newsqa',
 'huggingface:newsroom',
 'huggingface:nkjp-ner',
 'huggingface:nli_tr',
 'huggingface:norwegian_ner',
 'huggingface:nq_open',
 'huggingface:nsmc',
 'huggingface:numer_sense',
 'huggingface:numeric_fused_head',
 'huggingface:oclar',
 'huggingface:offcombr',
 'huggingface:offenseval2020_tr',
 'huggingface:offenseval_dravidian',
 'huggingface:ofis_publik',
 'huggingface:ohsumed',
 'huggingface:ollie',
 'huggingface:omp',
 'huggingface:onestop_english',
 'huggingface:open_subtitles',
 'huggingface:openbookqa',
 'huggingface:openwebtext',
 'huggingface:opinosis',
 'huggingface:opus100',
 'huggingface:opus_books',
 'huggingface:opus_dgt',
 'huggingface:opus_dogc',
 'huggingface:opus_elhuyar',
 'huggingface:opus_euconst',
 'huggingface:opus_finlex',
 'huggingface:opus_fiskmo',
 'huggingface:opus_gnome',
 'huggingface:opus_infopankki',
 'huggingface:opus_memat',
 'huggingface:opus_montenegrinsubs',
 'huggingface:opus_openoffice',
 'huggingface:opus_paracrawl',
 'huggingface:opus_rf',
 'huggingface:opus_tedtalks',
 'huggingface:opus_ubuntu',
 'huggingface:opus_wikipedia',
 'huggingface:opus_xhosanavy',
 'huggingface:orange_sum',
 'huggingface:oscar',
 'huggingface:para_crawl',
 'huggingface:para_pat',
 'huggingface:paws',
 'huggingface:paws-x',
 'huggingface:pec',
 'huggingface:peer_read',
 'huggingface:peoples_daily_ner',
 'huggingface:per_sent',
 'huggingface:persian_ner',
 'huggingface:pg19',
 'huggingface:php',
 'huggingface:piaf',
 'huggingface:pib',
 'huggingface:piqa',
 'huggingface:pn_summary',
 'huggingface:poem_sentiment',
 'huggingface:polemo2',
 'huggingface:poleval2019_cyberbullying',
 'huggingface:poleval2019_mt',
 'huggingface:polsum',
 'huggingface:polyglot_ner',
 'huggingface:prachathai67k',
 'huggingface:pragmeval',
 'huggingface:proto_qa',
 'huggingface:psc',
 'huggingface:ptb_text_only',
 'huggingface:pubmed',
 'huggingface:pubmed_qa',
 'huggingface:py_ast',
 'huggingface:qa4mre',
 'huggingface:qa_srl',
 'huggingface:qa_zre',
 'huggingface:qangaroo',
 'huggingface:qanta',
 'huggingface:qasc',
 'huggingface:qed',
 'huggingface:qed_amara',
 'huggingface:quac',
 'huggingface:quail',
 'huggingface:quarel',
 'huggingface:quartz',
 'huggingface:quora',
 'huggingface:quoref',
 'huggingface:race',
 'huggingface:re_dial',
 'huggingface:reasoning_bg',
 'huggingface:recipe_nlg',
 'huggingface:reclor',
 'huggingface:reddit',
 'huggingface:reddit_tifu',
 'huggingface:refresd',
 'huggingface:reuters21578',
 'huggingface:roman_urdu',
 'huggingface:ronec',
 'huggingface:ropes',
 'huggingface:rotten_tomatoes',
 'huggingface:s2orc',
 'huggingface:samsum',
 'huggingface:sanskrit_classic',
 'huggingface:saudinewsnet',
 'huggingface:scan',
 'huggingface:scb_mt_enth_2020',
 'huggingface:schema_guided_dstc8',
 'huggingface:scicite',
 'huggingface:scielo',
 'huggingface:scientific_papers',
 'huggingface:scifact',
 'huggingface:sciq',
 'huggingface:scitail',
 'huggingface:scitldr',
 'huggingface:search_qa',
 'huggingface:selqa',
 'huggingface:sem_eval_2010_task_8',
 'huggingface:sem_eval_2014_task_1',
 'huggingface:sem_eval_2020_task_11',
 'huggingface:sent_comp',
 'huggingface:senti_lex',
 'huggingface:senti_ws',
 'huggingface:sentiment140',
 'huggingface:sepedi_ner',
 'huggingface:sesotho_ner_corpus',
 'huggingface:setimes',
 'huggingface:setswana_ner_corpus',
 'huggingface:sharc',
 'huggingface:sharc_modified',
 'huggingface:sick',
 'huggingface:silicone',
 'huggingface:simple_questions_v2',
 'huggingface:siswati_ner_corpus',
 'huggingface:smartdata',
 'huggingface:sms_spam',
 'huggingface:snips_built_in_intents',
 'huggingface:snli',
 'huggingface:snow_simplified_japanese_corpus',
 'huggingface:so_stacksample',
 'huggingface:social_bias_frames',
 'huggingface:social_i_qa',
 'huggingface:sofc_materials_articles',
 'huggingface:sogou_news',
 'huggingface:spanish_billion_words',
 'huggingface:spc',
 'huggingface:species_800',
 'huggingface:spider',
 'huggingface:squad',
 'huggingface:squad_adversarial',
 'huggingface:squad_es',
 'huggingface:squad_it',
 'huggingface:squad_kor_v1',
 'huggingface:squad_kor_v2',
 'huggingface:squad_v1_pt',
 'huggingface:squad_v2',
 'huggingface:squadshifts',
 'huggingface:srwac',
 'huggingface:stereoset',
 'huggingface:stsb_mt_sv',
 'huggingface:style_change_detection',
 'huggingface:super_glue',
 'huggingface:swag',
 'huggingface:swahili',
 'huggingface:swahili_news',
 'huggingface:swda',
 'huggingface:swedish_ner_corpus',
 'huggingface:swedish_reviews',
 'huggingface:tab_fact',
 'huggingface:tamilmixsentiment',
 'huggingface:tanzil',
 'huggingface:tapaco',
 'huggingface:tashkeela',
 'huggingface:taskmaster1',
 'huggingface:taskmaster2',
 'huggingface:taskmaster3',
 'huggingface:tatoeba',
 'huggingface:ted_hrlr',
 'huggingface:ted_iwlst2013',
 'huggingface:ted_multi',
 'huggingface:ted_talks_iwslt',
 'huggingface:telugu_books',
 'huggingface:telugu_news',
 'huggingface:tep_en_fa_para',
 'huggingface:thai_toxicity_tweet',
 'huggingface:thainer',
 'huggingface:thaiqa_squad',
 'huggingface:thaisum',
 'huggingface:tilde_model',
 'huggingface:times_of_india_news_headlines',
 'huggingface:tiny_shakespeare',
 'huggingface:tlc',
 'huggingface:tmu_gfm_dataset',
 'huggingface:totto',
 'huggingface:trec',
 'huggingface:trivia_qa',
 'huggingface:tsac',
 'huggingface:ttc4900',
 'huggingface:tunizi',
 'huggingface:tuple_ie',
 'huggingface:turk',
 'huggingface:turkish_movie_sentiment',
 'huggingface:turkish_ner',
 'huggingface:turkish_product_reviews',
 'huggingface:turkish_shrinked_ner',
 'huggingface:turku_ner_corpus',
 'huggingface:tweet_eval',
 'huggingface:tweet_qa',
 'huggingface:tweets_ar_en_parallel',
 'huggingface:tweets_hate_speech_detection',
 'huggingface:twi_text_c3',
 'huggingface:twi_wordsim353',
 'huggingface:tydiqa',
 'huggingface:ubuntu_dialogs_corpus',
 'huggingface:udhr',
 'huggingface:um005',
 'huggingface:un_ga',
 'huggingface:un_multi',
 'huggingface:un_pc',
 'huggingface:universal_dependencies',
 'huggingface:universal_morphologies',
 'huggingface:urdu_fake_news',
 'huggingface:urdu_sentiment_corpus',
 'huggingface:web_nlg',
 'huggingface:web_of_science',
 'huggingface:web_questions',
 'huggingface:weibo_ner',
 'huggingface:wi_locness',
 'huggingface:wiki40b',
 'huggingface:wiki_asp',
 'huggingface:wiki_atomic_edits',
 'huggingface:wiki_auto',
 'huggingface:wiki_bio',
 'huggingface:wiki_dpr',
 'huggingface:wiki_hop',
 'huggingface:wiki_lingua',
 'huggingface:wiki_movies',
 'huggingface:wiki_qa',
 'huggingface:wiki_qa_ar',
 'huggingface:wiki_snippets',
 'huggingface:wiki_source',
 'huggingface:wiki_split',
 'huggingface:wiki_summary',
 'huggingface:wikiann',
 'huggingface:wikicorpus',
 'huggingface:wikihow',
 'huggingface:wikipedia',
 'huggingface:wikisql',
 'huggingface:wikitext',
 'huggingface:wikitext_tl39',
 'huggingface:wili_2018',
 'huggingface:wino_bias',
 'huggingface:winograd_wsc',
 'huggingface:winogrande',
 'huggingface:wiqa',
 'huggingface:wisesight1000',
 'huggingface:wisesight_sentiment',
 'huggingface:wmt14',
 'huggingface:wmt15',
 'huggingface:wmt16',
 'huggingface:wmt17',
 'huggingface:wmt18',
 'huggingface:wmt19',
 'huggingface:wmt20_mlqe_task1',
 'huggingface:wmt20_mlqe_task2',
 'huggingface:wmt20_mlqe_task3',
 'huggingface:wmt_t2t',
 'huggingface:wnut_17',
 'huggingface:wongnai_reviews',
 'huggingface:woz_dialogue',
 'huggingface:wrbsc',
 'huggingface:x_stance',
 'huggingface:xcopa',
 'huggingface:xed_en_fi',
 'huggingface:xglue',
 'huggingface:xnli',
 'huggingface:xor_tydi_qa',
 'huggingface:xquad',
 'huggingface:xquad_r',
 'huggingface:xsum',
 'huggingface:xsum_factuality',
 'huggingface:xtreme',
 'huggingface:yahoo_answers_qa',
 'huggingface:yahoo_answers_topics',
 'huggingface:yelp_polarity',
 'huggingface:yelp_review_full',
 'huggingface:yoruba_bbc_topics',
 'huggingface:yoruba_gv_ner',
 'huggingface:yoruba_text_c3',
 'huggingface:yoruba_wordsim353',
 'huggingface:youtube_caption_corrections',
 'huggingface:zest']

Carica un set di dati

tfds.load

Il modo più semplice di caricamento di un set di dati è tfds.load . Lo farà:

  1. Scaricare i dati e salvarlo come tfrecord file.
  2. Caricare il tfrecord e creare il tf.data.Dataset .
ds = tfds.load('mnist', split='train', shuffle_files=True)
assert isinstance(ds, tf.data.Dataset)
print(ds)
<_OptionsDataset shapes: {image: (28, 28, 1), label: ()}, types: {image: tf.uint8, label: tf.int64}>
2021-10-01 11:11:25.312723: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected

Alcuni argomenti comuni:

  • split= : Quale divisa da leggere (ad esempio 'train' , ['train', 'test'] , 'train[80%:]' , ...). Vedi la nostra guida divisa API .
  • shuffle_files= : Controllo se mischiare i file tra ogni epoca (TFDS memorizzano grandi insiemi di dati in più file più piccoli).
  • data_dir= : Luogo in cui il set di dati viene salvato (il valore predefinito è ~/tensorflow_datasets/ )
  • with_info=True : Restituisce il tfds.core.DatasetInfo contenente set di dati di metadati
  • download=False : disattivare il download

tfds.builder

tfds.load è un wrapper sottile intorno tfds.core.DatasetBuilder . È possibile ottenere lo stesso risultato utilizzando il tfds.core.DatasetBuilder API:

builder = tfds.builder('mnist')
# 1. Create the tfrecord files (no-op if already exists)
builder.download_and_prepare()
# 2. Load the `tf.data.Dataset`
ds = builder.as_dataset(split='train', shuffle_files=True)
print(ds)
<_OptionsDataset shapes: {image: (28, 28, 1), label: ()}, types: {image: tf.uint8, label: tf.int64}>

tfds build CLI

Se si desidera generare un determinato insieme di dati, è possibile utilizzare il tfds riga di comando . Per esempio:

tfds build mnist

Vedere il doc per bandiere disponibili.

Iterare su un set di dati

come detto

Per impostazione predefinita, il tf.data.Dataset oggetto contiene un dict di tf.Tensor s:

ds = tfds.load('mnist', split='train')
ds = ds.take(1)  # Only take a single example

for example in ds:  # example is `{'image': tf.Tensor, 'label': tf.Tensor}`
  print(list(example.keys()))
  image = example["image"]
  label = example["label"]
  print(image.shape, label)
['image', 'label']
(28, 28, 1) tf.Tensor(4, shape=(), dtype=int64)
2021-10-01 11:11:26.440171: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Per scoprire i dict nomi dei tasti e la struttura, un'occhiata alla documentazione di set di dati nel nostro catalogo . Per esempio: la documentazione mnist .

Come tuple ( as_supervised=True )

Utilizzando as_supervised=True , è possibile ottenere una tupla (features, label) , invece, per i set di dati supervisionati.

ds = tfds.load('mnist', split='train', as_supervised=True)
ds = ds.take(1)

for image, label in ds:  # example is (image, label)
  print(image.shape, label)
(28, 28, 1) tf.Tensor(4, shape=(), dtype=int64)
2021-10-01 11:11:27.059200: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Come NumPy ( tfds.as_numpy )

Usi tfds.as_numpy da convertire:

  • tf.Tensor -> np.array
  • tf.data.Dataset -> Iterator[Tree[np.array]] ( Tree può essere arbitrario nidificato Dict , Tuple )
ds = tfds.load('mnist', split='train', as_supervised=True)
ds = ds.take(1)

for image, label in tfds.as_numpy(ds):
  print(type(image), type(label), label)
<class 'numpy.ndarray'> <class 'numpy.int64'> 4
2021-10-01 11:11:27.810923: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Come tf.Tensor dosato ( batch_size=-1 )

Utilizzando batch_size=-1 , è possibile caricare l'intero set di dati in un singolo batch.

Questo può essere combinato con as_supervised=True e tfds.as_numpy per ottenere il i dati come (np.array, np.array) :

image, label = tfds.as_numpy(tfds.load(
    'mnist',
    split='test',
    batch_size=-1,
    as_supervised=True,
))

print(type(image), image.shape)
<class 'numpy.ndarray'> (10000, 28, 28, 1)

Fai attenzione che il tuo set di dati possa adattarsi alla memoria e che tutti gli esempi abbiano la stessa forma.

Confronta i tuoi set di dati

Benchmarking un set di dati è un semplice tfds.benchmark chiamata su qualsiasi iterabile (ad esempio tf.data.Dataset , tfds.as_numpy , ...).

ds = tfds.load('mnist', split='train')
ds = ds.batch(32).prefetch(1)

tfds.benchmark(ds, batch_size=32)
tfds.benchmark(ds, batch_size=32)  # Second epoch much faster due to auto-caching
************ Summary ************

Examples/sec (First included) 51662.24 ex/sec (total: 60000 ex, 1.16 sec)
Examples/sec (First only) 156.06 ex/sec (total: 32 ex, 0.21 sec)
Examples/sec (First excluded) 62705.61 ex/sec (total: 59968 ex, 0.96 sec)

************ Summary ************

Examples/sec (First included) 296607.58 ex/sec (total: 60000 ex, 0.20 sec)
Examples/sec (First only) 2467.76 ex/sec (total: 32 ex, 0.01 sec)
Examples/sec (First excluded) 316754.32 ex/sec (total: 59968 ex, 0.19 sec)
  • Non dimenticare di normalizzare i risultati per dimensione del lotto con la batch_size= kwarg.
  • In sintesi, il primo lotto di riscaldamento è separata dalle altre per catturare tf.data.Dataset tempo di setup supplementare (p.es. tamponi inizializzazione, ...).
  • Notate come la seconda iterazione è molto più veloce a causa di TFDS auto-caching .
  • tfds.benchmark restituisce un tfds.core.BenchmarkResult ispezionabile per ulteriori analisi.

Costruisci una pipeline end-to-end

Per andare oltre, puoi guardare:

Visualizzazione

tfds.as_dataframe

tf.data.Dataset oggetti possono essere convertiti in pandas.DataFrame con tfds.as_dataframe da visualizzare su Colab .

  • Aggiungere il tfds.core.DatasetInfo come secondo argomento di tfds.as_dataframe di visualizzare le immagini, audio, testi, video, ...
  • Usa ds.take(x) per visualizzare solo i primi x esempi. pandas.DataFrame caricherà l'intero set di dati in memoria, e può essere molto costoso visualizzazione.
ds, info = tfds.load('mnist', split='train', with_info=True)

tfds.as_dataframe(ds.take(4), info)
2021-10-01 11:11:30.981989: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

tfds.show_examples

tfds.show_examples restituisce un matplotlib.figure.Figure (solo set di dati immagine supportati ora):

ds, info = tfds.load('mnist', split='train', with_info=True)

fig = tfds.show_examples(ds, info)
2021-10-01 11:11:31.965362: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

png

Accedi ai metadati del set di dati

Tutti i costruttori includono tfds.core.DatasetInfo oggetto contenente i metadati set di dati.

È possibile accedervi tramite:

ds, info = tfds.load('mnist', with_info=True)
builder = tfds.builder('mnist')
info = builder.info

Le informazioni sul set di dati contengono informazioni aggiuntive sul set di dati (versione, citazione, homepage, descrizione,...).

print(info)
tfds.core.DatasetInfo(
    name='mnist',
    full_name='mnist/3.0.1',
    description="""
    The MNIST database of handwritten digits.
    """,
    homepage='http://yann.lecun.com/exdb/mnist/',
    data_path='gs://tensorflow-datasets/datasets/mnist/3.0.1',
    download_size=11.06 MiB,
    dataset_size=21.00 MiB,
    features=FeaturesDict({
        'image': Image(shape=(28, 28, 1), dtype=tf.uint8),
        'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=10),
    }),
    supervised_keys=('image', 'label'),
    disable_shuffling=False,
    splits={
        'test': <SplitInfo num_examples=10000, num_shards=1>,
        'train': <SplitInfo num_examples=60000, num_shards=1>,
    },
    citation="""@article{lecun2010mnist,
      title={MNIST handwritten digit database},
      author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
      journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
      volume={2},
      year={2010}
    }""",
)

Caratteristiche dei metadati (nomi delle etichette, forma dell'immagine,...)

Accedi al tfds.features.FeatureDict :

info.features
FeaturesDict({
    'image': Image(shape=(28, 28, 1), dtype=tf.uint8),
    'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=10),
})

Numero di classi, nomi di etichette:

print(info.features["label"].num_classes)
print(info.features["label"].names)
print(info.features["label"].int2str(7))  # Human readable version (8 -> 'cat')
print(info.features["label"].str2int('7'))
10
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
7
7

Forme, dtype:

print(info.features.shape)
print(info.features.dtype)
print(info.features['image'].shape)
print(info.features['image'].dtype)
{'image': (28, 28, 1), 'label': ()}
{'image': tf.uint8, 'label': tf.int64}
(28, 28, 1)
<dtype: 'uint8'>

Metadati divisi (ad es. nomi divisi, numero di esempi,...)

Accedi al tfds.core.SplitDict :

print(info.splits)
{'test': <SplitInfo num_examples=10000, num_shards=1>, 'train': <SplitInfo num_examples=60000, num_shards=1>}

Divisioni disponibili:

print(list(info.splits.keys()))
['test', 'train']

Ottieni informazioni sulla suddivisione individuale:

print(info.splits['train'].num_examples)
print(info.splits['train'].filenames)
print(info.splits['train'].num_shards)
60000
['mnist-train.tfrecord-00000-of-00001']
1

Funziona anche con l'API subsplit:

print(info.splits['train[15%:75%]'].num_examples)
print(info.splits['train[15%:75%]'].file_instructions)
36000
[FileInstruction(filename='mnist-train.tfrecord-00000-of-00001', skip=9000, take=36000, num_examples=36000)]

Risoluzione dei problemi

Download manuale (se il download fallisce)

Se il download fallisce per qualche motivo (es. offline,...). È sempre possibile scaricare manualmente i dati stessi e posizionarlo nella manual_dir (il default è ~/tensorflow_datasets/download/manual/ .

Per scoprire quali URL scaricare, esamina:

fissaggio NonMatchingChecksumError

TFDS garantisce il determinismo convalidando i checksum degli URL scaricati. Se NonMatchingChecksumError è sollevato, potrebbe indicare:

  • Il sito può essere basso (ad esempio, 503 status code ). Si prega di controllare l'URL.
  • Per gli URL di Google Drive, riprova più tardi poiché Drive a volte rifiuta i download quando troppe persone accedono allo stesso URL. Vedere bug
  • I file dei set di dati originali potrebbero essere stati aggiornati. In questo caso, è necessario aggiornare il generatore di set di dati TFDS. Si prega di aprire un nuovo problema di Github o PR:
    • Registrare il nuovo checksum con tfds build --register_checksums
    • Eventualmente aggiornare il codice di generazione del set di dati.
    • Aggiornare il set di dati VERSION
    • Aggiornare il set di dati RELEASE_NOTES : Che cosa ha causato il checksum al cambiamento? Alcuni esempi sono cambiati?
    • Assicurati che il set di dati possa ancora essere creato.
    • Inviaci un PR

Citazione

Se utilizzi tensorflow-datasets per un documento, si prega di includere la seguente motivazione, in aggiunta a qualsiasi citazione specifica per i set di dati utilizzati (che si possono trovare nel catalogo di set di dati ).

@misc{TFDS,
  title = { {TensorFlow Datasets}, A collection of ready-to-use datasets},
  howpublished = {\url{https://www.tensorflow.org/datasets} },
}