ตัวอย่างการย้ายถิ่น: เครื่องมือประมาณการกระป๋อง

ดูบน TensorFlow.org ทำงานใน Google Colab ดูแหล่งที่มาบน GitHub ดาวน์โหลดโน๊ตบุ๊ค

ตัวประมาณแบบกระป๋อง (หรือแบบสำเร็จรูป) มักใช้ใน TensorFlow 1 เป็นวิธีที่ง่ายและรวดเร็วในการฝึกโมเดลสำหรับกรณีการใช้งานทั่วไปที่หลากหลาย TensorFlow 2 ให้การทดแทนโดยประมาณที่ตรงไปตรงมาสำหรับจำนวนดังกล่าวโดยใช้แบบจำลอง Keras สำหรับตัวประมาณค่ากระป๋องที่ไม่มีตัวทดแทน TensorFlow 2 ในตัว คุณยังสามารถสร้างตัวทดแทนของคุณเองได้อย่างง่ายดาย

คู่มือนี้จะอธิบายตัวอย่างบางส่วนของการเทียบเท่าโดยตรงและการแทนที่แบบกำหนดเองเพื่อแสดงให้เห็นว่าโมเดลที่ได้รับ tf.estimator ของ tf.estimator 1 สามารถโยกย้ายไปยัง TF2 ด้วย Keras ได้อย่างไร

กล่าวคือ คู่มือนี้มีตัวอย่างสำหรับการย้ายข้อมูล:

สารตั้งต้นทั่วไปในการฝึกโมเดลคือการประมวลผลคุณลักษณะล่วงหน้า ซึ่งทำขึ้นสำหรับโมเดล TensorFlow 1 Estimator ที่มี tf.feature_column สำหรับข้อมูลเพิ่มเติมเกี่ยวกับการประมวลผลคุณลักษณะล่วงหน้าใน TensorFlow 2 โปรดดู คู่มือนี้เกี่ยวกับการย้ายคอลัมน์คุณลักษณะ

ติดตั้ง

เริ่มต้นด้วยการนำเข้า TensorFlow ที่จำเป็นสองสามรายการ

pip install tensorflow_decision_forests
import keras
import pandas as pd
import tensorflow as tf
import tensorflow.compat.v1 as tf1
import tensorflow_decision_forests as tfdf
WARNING:root:TF Parameter Server distributed training not available (this is expected for the pre-build release).

เตรียมข้อมูลง่ายๆ สำหรับการสาธิตจากชุดข้อมูลไททานิคมาตรฐาน

x_train = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv')
x_eval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv')
x_train['sex'].replace(('male', 'female'), (0, 1), inplace=True)
x_eval['sex'].replace(('male', 'female'), (0, 1), inplace=True)

x_train['alone'].replace(('n', 'y'), (0, 1), inplace=True)
x_eval['alone'].replace(('n', 'y'), (0, 1), inplace=True)

x_train['class'].replace(('First', 'Second', 'Third'), (1, 2, 3), inplace=True)
x_eval['class'].replace(('First', 'Second', 'Third'), (1, 2, 3), inplace=True)

x_train.drop(['embark_town', 'deck'], axis=1, inplace=True)
x_eval.drop(['embark_town', 'deck'], axis=1, inplace=True)

y_train = x_train.pop('survived')
y_eval = x_eval.pop('survived')
# Data setup for TensorFlow 1 with `tf.estimator`
def _input_fn():
  return tf1.data.Dataset.from_tensor_slices((dict(x_train), y_train)).batch(32)


def _eval_input_fn():
  return tf1.data.Dataset.from_tensor_slices((dict(x_eval), y_eval)).batch(32)


FEATURE_NAMES = [
    'age', 'fare', 'sex', 'n_siblings_spouses', 'parch', 'class', 'alone'
]

feature_columns = []
for fn in FEATURE_NAMES:
  feat_col = tf1.feature_column.numeric_column(fn, dtype=tf.float32)
  feature_columns.append(feat_col)

และสร้างวิธีการสร้างตัวอย่างเครื่องมือเพิ่มประสิทธิภาพอย่างง่ายเพื่อใช้กับตัวประมาณค่า TensorFlow 1 และรุ่น TensorFlow 2 Keras ต่างๆ ของเรา

def create_sample_optimizer(tf_version):
  if tf_version == 'tf1':
    optimizer = lambda: tf.keras.optimizers.Ftrl(
        l1_regularization_strength=0.001,
        learning_rate=tf1.train.exponential_decay(
            learning_rate=0.1,
            global_step=tf1.train.get_global_step(),
            decay_steps=10000,
            decay_rate=0.9))
  elif tf_version == 'tf2':
    optimizer = tf.keras.optimizers.Ftrl(
        l1_regularization_strength=0.001,
        learning_rate=tf.keras.optimizers.schedules.ExponentialDecay(
            initial_learning_rate=0.1, decay_steps=10000, decay_rate=0.9))
  return optimizer

ตัวอย่างที่ 1: การโยกย้ายจาก LinearEstimator

TF1: การใช้ตัวประมาณเชิงเส้น

ใน TensorFlow 1 คุณสามารถใช้ tf.estimator.LinearEstimator เพื่อสร้างแบบจำลองเชิงเส้นตรงพื้นฐานสำหรับปัญหาการถดถอยและการจำแนกประเภท

linear_estimator = tf.estimator.LinearEstimator(
    head=tf.estimator.BinaryClassHead(),
    feature_columns=feature_columns,
    optimizer=create_sample_optimizer('tf1'))
INFO:tensorflow:Using default config.
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpvoycvffz
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpvoycvffz
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpvoycvffz', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpvoycvffz', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
linear_estimator.train(input_fn=_input_fn, steps=100)
linear_estimator.evaluate(input_fn=_eval_input_fn, steps=10)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:401: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:401: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/canned/linear.py:1478: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead.
  getter=tf.compat.v1.get_variable)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/ftrl.py:149: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/ftrl.py:149: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpvoycvffz/model.ckpt.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpvoycvffz/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 0.6931472, step = 0
INFO:tensorflow:loss = 0.6931472, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 20...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 20...
INFO:tensorflow:Saving checkpoints for 20 into /tmp/tmpvoycvffz/model.ckpt.
INFO:tensorflow:Saving checkpoints for 20 into /tmp/tmpvoycvffz/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 20...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 20...
INFO:tensorflow:Loss for final step: 0.55268794.
INFO:tensorflow:Loss for final step: 0.55268794.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-29T02:21:45
INFO:tensorflow:Starting evaluation at 2022-01-29T02:21:45
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpvoycvffz/model.ckpt-20
INFO:tensorflow:Restoring parameters from /tmp/tmpvoycvffz/model.ckpt-20
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Inference Time : 0.50224s
INFO:tensorflow:Inference Time : 0.50224s
INFO:tensorflow:Finished evaluation at 2022-01-29-02:21:45
INFO:tensorflow:Finished evaluation at 2022-01-29-02:21:45
INFO:tensorflow:Saving dict for global step 20: accuracy = 0.70075756, accuracy_baseline = 0.625, auc = 0.75472915, auc_precision_recall = 0.65362054, average_loss = 0.5759378, global_step = 20, label/mean = 0.375, loss = 0.5704812, precision = 0.6388889, prediction/mean = 0.41331062, recall = 0.46464646
INFO:tensorflow:Saving dict for global step 20: accuracy = 0.70075756, accuracy_baseline = 0.625, auc = 0.75472915, auc_precision_recall = 0.65362054, average_loss = 0.5759378, global_step = 20, label/mean = 0.375, loss = 0.5704812, precision = 0.6388889, prediction/mean = 0.41331062, recall = 0.46464646
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20: /tmp/tmpvoycvffz/model.ckpt-20
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20: /tmp/tmpvoycvffz/model.ckpt-20
{'accuracy': 0.70075756,
 'accuracy_baseline': 0.625,
 'auc': 0.75472915,
 'auc_precision_recall': 0.65362054,
 'average_loss': 0.5759378,
 'label/mean': 0.375,
 'loss': 0.5704812,
 'precision': 0.6388889,
 'prediction/mean': 0.41331062,
 'recall': 0.46464646,
 'global_step': 20}

TF2: การใช้ Keras LinearModel

ใน TensorFlow 2 คุณสามารถสร้างอินสแตนซ์ของ Keras tf.compat.v1.keras.models.LinearModel ซึ่งใช้แทน tf.estimator.LinearEstimator พาธ tf.compat.v1.keras ใช้เพื่อแสดงว่ามีโมเดลที่สร้างไว้ล่วงหน้าสำหรับความเข้ากันได้

linear_model = tf.compat.v1.keras.experimental.LinearModel()
linear_model.compile(loss='mse', optimizer=create_sample_optimizer('tf2'), metrics=['accuracy'])
linear_model.fit(x_train, y_train, epochs=10)
linear_model.evaluate(x_eval, y_eval, return_dict=True)
Epoch 1/10
20/20 [==============================] - 0s 2ms/step - loss: 2.8157 - accuracy: 0.6300
Epoch 2/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2758 - accuracy: 0.6427
Epoch 3/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2470 - accuracy: 0.6699
Epoch 4/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1954 - accuracy: 0.7177
Epoch 5/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1931 - accuracy: 0.7145
Epoch 6/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1816 - accuracy: 0.7496
Epoch 7/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1766 - accuracy: 0.7751
Epoch 8/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2198 - accuracy: 0.7560
Epoch 9/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1657 - accuracy: 0.7959
Epoch 10/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1738 - accuracy: 0.7959
9/9 [==============================] - 0s 2ms/step - loss: 0.2278 - accuracy: 0.6780
{'loss': 0.22778697311878204, 'accuracy': 0.6780303120613098}

ตัวอย่างที่ 2: การโยกย้ายจาก DNNEstimator

TF1: การใช้DNNEstimator

ใน TensorFlow 1 คุณสามารถใช้ tf.estimator.DNNEstimator เพื่อสร้างแบบจำลอง DNN พื้นฐานสำหรับปัญหาการถดถอยและการจำแนกประเภท

dnn_estimator = tf.estimator.DNNEstimator(
    head=tf.estimator.BinaryClassHead(),
    feature_columns=feature_columns,
    hidden_units=[128],
    activation_fn=tf.nn.relu,
    optimizer=create_sample_optimizer('tf1'))
INFO:tensorflow:Using default config.
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmphckb8f81
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmphckb8f81
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmphckb8f81', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmphckb8f81', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
dnn_estimator.train(input_fn=_input_fn, steps=100)
dnn_estimator.evaluate(input_fn=_eval_input_fn, steps=10)
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmphckb8f81/model.ckpt.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmphckb8f81/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 2.1811047, step = 0
INFO:tensorflow:loss = 2.1811047, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 20...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 20...
INFO:tensorflow:Saving checkpoints for 20 into /tmp/tmphckb8f81/model.ckpt.
INFO:tensorflow:Saving checkpoints for 20 into /tmp/tmphckb8f81/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 20...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 20...
INFO:tensorflow:Loss for final step: 0.5881681.
INFO:tensorflow:Loss for final step: 0.5881681.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-29T02:21:48
INFO:tensorflow:Starting evaluation at 2022-01-29T02:21:48
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmphckb8f81/model.ckpt-20
INFO:tensorflow:Restoring parameters from /tmp/tmphckb8f81/model.ckpt-20
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Inference Time : 0.47075s
INFO:tensorflow:Inference Time : 0.47075s
INFO:tensorflow:Finished evaluation at 2022-01-29-02:21:49
INFO:tensorflow:Finished evaluation at 2022-01-29-02:21:49
INFO:tensorflow:Saving dict for global step 20: accuracy = 0.7083333, accuracy_baseline = 0.625, auc = 0.70716256, auc_precision_recall = 0.6146256, average_loss = 0.60399944, global_step = 20, label/mean = 0.375, loss = 0.5986442, precision = 0.6486486, prediction/mean = 0.41256863, recall = 0.4848485
INFO:tensorflow:Saving dict for global step 20: accuracy = 0.7083333, accuracy_baseline = 0.625, auc = 0.70716256, auc_precision_recall = 0.6146256, average_loss = 0.60399944, global_step = 20, label/mean = 0.375, loss = 0.5986442, precision = 0.6486486, prediction/mean = 0.41256863, recall = 0.4848485
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20: /tmp/tmphckb8f81/model.ckpt-20
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20: /tmp/tmphckb8f81/model.ckpt-20
{'accuracy': 0.7083333,
 'accuracy_baseline': 0.625,
 'auc': 0.70716256,
 'auc_precision_recall': 0.6146256,
 'average_loss': 0.60399944,
 'label/mean': 0.375,
 'loss': 0.5986442,
 'precision': 0.6486486,
 'prediction/mean': 0.41256863,
 'recall': 0.4848485,
 'global_step': 20}

TF2: การใช้ Keras เพื่อสร้างโมเดล DNN ที่กำหนดเอง

ใน TensorFlow 2 คุณสามารถสร้างโมเดล DNN ที่กำหนดเองเพื่อแทนที่โมเดลที่สร้างโดย tf.estimator.DNNEstimator ด้วยการปรับแต่งที่ผู้ใช้ระบุในระดับใกล้เคียงกัน (เช่น ในตัวอย่างก่อนหน้านี้ ความสามารถในการปรับแต่งเครื่องมือเพิ่มประสิทธิภาพโมเดลที่เลือก) .

สามารถใช้เวิร์กโฟลว์ที่คล้ายกันเพื่อแทนที่ tf.estimator.experimental.RNNEstimator ด้วย Keras RNN Model Keras มีตัวเลือกมากมายในตัวที่ปรับแต่งได้โดยใช้ tf.keras.layers.RNN , tf.keras.layers.LSTM และ tf.keras.layers.GRU - ดูรายละเอียดเพิ่มเติม ที่นี่

dnn_model = tf.keras.models.Sequential(
    [tf.keras.layers.Dense(128, activation='relu'),
     tf.keras.layers.Dense(1)])

dnn_model.compile(loss='mse', optimizer=create_sample_optimizer('tf2'), metrics=['accuracy'])
dnn_model.fit(x_train, y_train, epochs=10)
dnn_model.evaluate(x_eval, y_eval, return_dict=True)
Epoch 1/10
20/20 [==============================] - 0s 2ms/step - loss: 551.2993 - accuracy: 0.5997
Epoch 2/10
20/20 [==============================] - 0s 2ms/step - loss: 16.8562 - accuracy: 0.6427
Epoch 3/10
20/20 [==============================] - 0s 2ms/step - loss: 0.3048 - accuracy: 0.7161
Epoch 4/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2475 - accuracy: 0.7416
Epoch 5/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2334 - accuracy: 0.7512
Epoch 6/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2200 - accuracy: 0.7416
Epoch 7/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2012 - accuracy: 0.7656
Epoch 8/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2025 - accuracy: 0.7624
Epoch 9/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2185 - accuracy: 0.7703
Epoch 10/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2046 - accuracy: 0.7687
9/9 [==============================] - 0s 2ms/step - loss: 0.2227 - accuracy: 0.6856
{'loss': 0.2227054387331009, 'accuracy': 0.685606062412262}

ตัวอย่างที่ 3: การย้ายข้อมูลจาก DNNLinearCombinedEstimator

TF1: การใช้ DNNLinearCombinedEstimator

ใน TensorFlow 1 คุณสามารถใช้ tf.estimator.DNNLinearCombinedEstimator เพื่อสร้างแบบจำลองพื้นฐานแบบรวมสำหรับปัญหาการถดถอยและการจัดหมวดหมู่ด้วยความสามารถในการปรับแต่งสำหรับส่วนประกอบเชิงเส้นและ DNN

optimizer = create_sample_optimizer('tf1')

combined_estimator = tf.estimator.DNNLinearCombinedEstimator(
    head=tf.estimator.BinaryClassHead(),
    # Wide settings
    linear_feature_columns=feature_columns,
    linear_optimizer=optimizer,
    # Deep settings
    dnn_feature_columns=feature_columns,
    dnn_hidden_units=[128],
    dnn_optimizer=optimizer)
INFO:tensorflow:Using default config.
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpwl5e5eaq
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpwl5e5eaq
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpwl5e5eaq', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpwl5e5eaq', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
combined_estimator.train(input_fn=_input_fn, steps=100)
combined_estimator.evaluate(input_fn=_eval_input_fn, steps=10)
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/canned/linear.py:1478: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead.
  getter=tf.compat.v1.get_variable)
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpwl5e5eaq/model.ckpt.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpwl5e5eaq/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 2.5475807, step = 0
INFO:tensorflow:loss = 2.5475807, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 20...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 20...
INFO:tensorflow:Saving checkpoints for 20 into /tmp/tmpwl5e5eaq/model.ckpt.
INFO:tensorflow:Saving checkpoints for 20 into /tmp/tmpwl5e5eaq/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 20...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 20...
INFO:tensorflow:Loss for final step: 0.58060575.
INFO:tensorflow:Loss for final step: 0.58060575.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-29T02:21:53
INFO:tensorflow:Starting evaluation at 2022-01-29T02:21:53
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpwl5e5eaq/model.ckpt-20
INFO:tensorflow:Restoring parameters from /tmp/tmpwl5e5eaq/model.ckpt-20
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Inference Time : 0.54029s
INFO:tensorflow:Inference Time : 0.54029s
INFO:tensorflow:Finished evaluation at 2022-01-29-02:21:53
INFO:tensorflow:Finished evaluation at 2022-01-29-02:21:53
INFO:tensorflow:Saving dict for global step 20: accuracy = 0.6931818, accuracy_baseline = 0.625, auc = 0.73532283, auc_precision_recall = 0.630229, average_loss = 0.65179086, global_step = 20, label/mean = 0.375, loss = 0.63768697, precision = 0.60714287, prediction/mean = 0.4162652, recall = 0.5151515
INFO:tensorflow:Saving dict for global step 20: accuracy = 0.6931818, accuracy_baseline = 0.625, auc = 0.73532283, auc_precision_recall = 0.630229, average_loss = 0.65179086, global_step = 20, label/mean = 0.375, loss = 0.63768697, precision = 0.60714287, prediction/mean = 0.4162652, recall = 0.5151515
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20: /tmp/tmpwl5e5eaq/model.ckpt-20
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20: /tmp/tmpwl5e5eaq/model.ckpt-20
{'accuracy': 0.6931818,
 'accuracy_baseline': 0.625,
 'auc': 0.73532283,
 'auc_precision_recall': 0.630229,
 'average_loss': 0.65179086,
 'label/mean': 0.375,
 'loss': 0.63768697,
 'precision': 0.60714287,
 'prediction/mean': 0.4162652,
 'recall': 0.5151515,
 'global_step': 20}

TF2: การใช้ Keras WideDeepModel

ใน TensorFlow 2 คุณสามารถสร้างอินสแตนซ์ของ Keras tf.compat.v1.keras.models.WideDeepModel เพื่อทดแทนการสร้างโดย tf.estimator.DNNLinearCombinedEstimator โดยมีการปรับแต่งที่ผู้ใช้ระบุในระดับใกล้เคียงกัน (เช่น ใน ตัวอย่างก่อนหน้า ความสามารถในการปรับแต่งเครื่องมือเพิ่มประสิทธิภาพรุ่นที่เลือก)

WideDeepModel นี้สร้างขึ้นบนพื้นฐานของ LinearModel ที่เป็นส่วนประกอบและ DNN Model ที่กำหนดเอง ซึ่งทั้งสองอย่างนี้ถูกกล่าวถึงในสองตัวอย่างก่อนหน้านี้ สามารถใช้โมเดลเชิงเส้นแบบกำหนดเองแทน Keras LinearModel ในตัวได้หากต้องการ

หากคุณต้องการสร้างแบบจำลองของคุณเองแทนที่จะใช้ตัวประมาณแบบกระป๋อง โปรดดู วิธีสร้าง keras.Sequential model สำหรับข้อมูลเพิ่มเติมเกี่ยวกับการฝึกอบรมแบบกำหนดเองและเครื่องมือเพิ่มประสิทธิภาพ คุณสามารถชำระเงิน คู่มือ นี้

# Create LinearModel and DNN Model as in Examples 1 and 2
optimizer = create_sample_optimizer('tf2')

linear_model = tf.compat.v1.keras.experimental.LinearModel()
linear_model.compile(loss='mse', optimizer=optimizer, metrics=['accuracy'])
linear_model.fit(x_train, y_train, epochs=10, verbose=0)

dnn_model = tf.keras.models.Sequential(
    [tf.keras.layers.Dense(128, activation='relu'),
     tf.keras.layers.Dense(1)])
dnn_model.compile(loss='mse', optimizer=optimizer, metrics=['accuracy'])
combined_model = tf.compat.v1.keras.experimental.WideDeepModel(linear_model,
                                                               dnn_model)
combined_model.compile(
    optimizer=[optimizer, optimizer], loss='mse', metrics=['accuracy'])
combined_model.fit([x_train, x_train], y_train, epochs=10)
combined_model.evaluate(x_eval, y_eval, return_dict=True)
Epoch 1/10
20/20 [==============================] - 0s 2ms/step - loss: 1118.0448 - accuracy: 0.6715
Epoch 2/10
20/20 [==============================] - 0s 2ms/step - loss: 0.5682 - accuracy: 0.7305
Epoch 3/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2719 - accuracy: 0.7671
Epoch 4/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2032 - accuracy: 0.7831
Epoch 5/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1911 - accuracy: 0.7783
Epoch 6/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1895 - accuracy: 0.7863
Epoch 7/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1882 - accuracy: 0.7863
Epoch 8/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1717 - accuracy: 0.7974
Epoch 9/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1701 - accuracy: 0.7927
Epoch 10/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1684 - accuracy: 0.7990
9/9 [==============================] - 0s 2ms/step - loss: 0.1930 - accuracy: 0.7424
{'loss': 0.19299836456775665, 'accuracy': 0.7424242496490479}

ตัวอย่างที่ 4: การโยกย้ายจาก BoostedTreesEstimator

TF1: การใช้ BoostedTreesEstimator

ใน TensorFlow 1 คุณสามารถใช้ tf.estimator.BoostedTreesEstimator เพื่อสร้างเส้นพื้นฐานเพื่อสร้างแบบจำลอง Gradient Boosting พื้นฐานโดยใช้ชุดแผนผังการตัดสินใจสำหรับปัญหาการถดถอยและการจำแนกประเภท ฟังก์ชันนี้ไม่รวมอยู่ใน TensorFlow 2 แล้ว

bt_estimator = tf1.estimator.BoostedTreesEstimator(
    head=tf.estimator.BinaryClassHead(),
    n_batches_per_layer=1,
    max_depth=10,
    n_trees=1000,
    feature_columns=feature_columns)
bt_estimator.train(input_fn=_input_fn, steps=1000)
bt_estimator.evaluate(input_fn=_eval_input_fn, steps=100)

TF2: การใช้ TensorFlow Decision Forests

ใน TensorFlow 2 การแทนที่แบบสำเร็จรูปที่ใกล้เคียงที่สุดสำหรับโมเดลที่สร้างโดย tf.estimator.BoostedTreesEstimator ถูกสร้างขึ้นโดยใช้ tfdf.keras.GradientBoostedTreesModel ซึ่งจะสร้างลำดับต้นไม้การตัดสินใจที่ตื้นซึ่งได้รับการฝึกอบรมมาตามลำดับ โดยแต่ละรายการออกแบบมาเพื่อ "เรียนรู้" จากข้อผิดพลาด ทำโดยรุ่นก่อนในลำดับ

GradientBoostedTreesModel มีตัวเลือกเพิ่มเติมสำหรับการปรับแต่ง ซึ่งช่วยให้สามารถระบุทุกอย่างได้ตั้งแต่ข้อจำกัดความลึกพื้นฐานไปจนถึงเงื่อนไขการหยุดก่อนกำหนด ดู ที่นี่ สำหรับรายละเอียดแอตทริบิวต์ GradientBoostedTreesModel เพิ่มเติม

gbt_model = tfdf.keras.GradientBoostedTreesModel(
    task=tfdf.keras.Task.CLASSIFICATION)
gbt_model.compile(metrics=['mse', 'accuracy'])
Use /tmp/tmpbr1acn2_ as temporary training directory
train_df, eval_df = x_train.copy(), x_eval.copy()
train_df['survived'], eval_df['survived'] = y_train, y_eval

train_dataset = tfdf.keras.pd_dataframe_to_tf_dataset(train_df, label='survived')
eval_dataset = tfdf.keras.pd_dataframe_to_tf_dataset(eval_df, label='survived')

gbt_model.fit(train_dataset)
gbt_model.evaluate(eval_dataset, return_dict=True)
Starting reading the dataset
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_decision_forests/keras/core.py:2036: FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only
  features_dataframe = dataframe.drop(label, 1)
1/1 [==============================] - ETA: 0s
Dataset read in 0:00:03.161776
Training model
Model trained in 0:00:00.102649
Compiling model
1/1 [==============================] - 3s 3s/step
[INFO kernel.cc:1153] Loading model from path
[INFO abstract_model.cc:1063] Engine "GradientBoostedTreesQuickScorerExtended" built
[INFO kernel.cc:1001] Use fast generic engine
WARNING:tensorflow:AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f95e9db4e60> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING:tensorflow:AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f95e9db4e60> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING: AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f95e9db4e60> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
1/1 [==============================] - 0s 388ms/step - loss: 0.0000e+00 - mse: 0.1308 - accuracy: 0.8144
{'loss': 0.0, 'mse': 0.13076548278331757, 'accuracy': 0.814393937587738}

ใน TensorFlow 2 ยังมี TFDF อื่นทดแทนสำหรับโมเดลที่สร้างโดย tf.estimator.BoostedTreesEstimator - tfdf.keras.RandomForestModel RandomForestModel สร้างผู้เรียนที่แข็งแกร่งและทนต่อการใช้งานมากเกินไป ซึ่งประกอบด้วยประชากรที่ลงคะแนนเสียงของต้นไม้การตัดสินใจที่ลึกซึ้ง โดยแต่ละคนได้รับการฝึกอบรมเกี่ยวกับชุดย่อยแบบสุ่มของชุดข้อมูลการฝึกอบรมอินพุต

RandomForestModel และ GradientBoostedTreesModel ให้ระดับการปรับแต่งที่กว้างขวางเช่นเดียวกัน การเลือกระหว่างสิ่งเหล่านี้เป็นปัญหาเฉพาะและขึ้นอยู่กับงานหรือแอปพลิเคชันของคุณ

ตรวจสอบเอกสาร API สำหรับข้อมูลเพิ่มเติมเกี่ยวกับ RandomForestModel และ GradientBoostedTreesModel

rf_model = tfdf.keras.RandomForestModel(
    task=tfdf.keras.Task.CLASSIFICATION)
rf_model.compile(metrics=['mse', 'accuracy'])
Use /tmp/tmpluh2ebcj as temporary training directory
rf_model.fit(train_dataset)
rf_model.evaluate(eval_dataset, return_dict=True)
Starting reading the dataset
1/1 [==============================] - ETA: 0s
Dataset read in 0:00:00.094262
Training model
Model trained in 0:00:00.083656
Compiling model
1/1 [==============================] - 0s 260ms/step
[INFO kernel.cc:1153] Loading model from path
[INFO kernel.cc:1001] Use fast generic engine
1/1 [==============================] - 0s 123ms/step - loss: 0.0000e+00 - mse: 0.1270 - accuracy: 0.8636
{'loss': 0.0, 'mse': 0.12698587775230408, 'accuracy': 0.8636363744735718}