Đánh giá di chuyển

Xem trên TensorFlow.org Chạy trong Google Colab Xem nguồn trên GitHub Tải xuống sổ ghi chép

Đánh giá là một phần quan trọng của mô hình đo lường và điểm chuẩn.

Hướng dẫn này trình bày cách di chuyển các tác vụ của trình đánh giá từ TensorFlow 1 sang TensorFlow 2. Trong Tensorflow 1, chức năng này được triển khai bởi tf.estimator.train_and_evaluate , khi API đang chạy phân tán. Trong Tensorflow 2, bạn có thể sử dụng tf.keras.utils.SidecarEvaluator , hoặc một vòng lặp đánh giá tùy chỉnh trên nhiệm vụ người đánh giá.

Có các tùy chọn đánh giá nối tiếp đơn giản trong cả TensorFlow 1 ( tf.estimator.Estimator.evaluate ) và TensorFlow 2 ( Model.fit(..., validation_data=(...)) hoặc Model.evaluate ). Nhiệm vụ của người đánh giá thích hợp hơn khi bạn muốn nhân viên của mình không chuyển đổi giữa đào tạo và đánh giá, và đánh giá tích hợp trong Model.fit sẽ thích hợp hơn khi bạn muốn phân phối đánh giá của mình.

Thành lập

import tensorflow.compat.v1 as tf1
import tensorflow as tf
import numpy as np
import tempfile
import time
import os
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376/11490434 [==============================] - 0s 0us/step
11501568/11490434 [==============================] - 0s 0us/step

TensorFlow 1: Đánh giá bằng tf.estimator.train_and_evaluate

Trong TensorFlow 1, bạn có thể định cấu hình tf.estimator để đánh giá công cụ ước tính bằng cách sử dụng tf.estimator.train_and_evaluate .

Trong ví dụ này, hãy bắt đầu bằng cách xác định thông số kỹ thuật đào tạo và đánh giá tf.estimator.Estimator và speciyfing:

feature_columns = [tf1.feature_column.numeric_column("x", shape=[28, 28])]

classifier = tf1.estimator.DNNClassifier(
    feature_columns=feature_columns,
    hidden_units=[256, 32],
    optimizer=tf1.train.AdamOptimizer(0.001),
    n_classes=10,
    dropout=0.2
)

train_input_fn = tf1.estimator.inputs.numpy_input_fn(
    x={"x": x_train},
    y=y_train.astype(np.int32),
    num_epochs=10,
    batch_size=50,
    shuffle=True,
)

test_input_fn = tf1.estimator.inputs.numpy_input_fn(
    x={"x": x_test},
    y=y_test.astype(np.int32),
    num_epochs=10,
    shuffle=False
)

train_spec = tf1.estimator.TrainSpec(input_fn=train_input_fn, max_steps=10)
eval_spec = tf1.estimator.EvalSpec(input_fn=test_input_fn,
                                   steps=10,
                                   throttle_secs=0)
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpv82biaa9
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpv82biaa9', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
WARNING:tensorflow:From /tmp/ipykernel_20878/122738158.py:11: The name tf.estimator.inputs is deprecated. Please use tf.compat.v1.estimator.inputs instead.

WARNING:tensorflow:From /tmp/ipykernel_20878/122738158.py:11: The name tf.estimator.inputs.numpy_input_fn is deprecated. Please use tf.compat.v1.estimator.inputs.numpy_input_fn instead.

Sau đó, đào tạo và đánh giá mô hình. Đánh giá chạy đồng bộ giữa đào tạo vì nó được giới hạn như một cuộc chạy cục bộ trong sổ ghi chép này và xen kẽ giữa đào tạo và đánh giá. Tuy nhiên, nếu bộ ước lượng được sử dụng một cách phân tán, bộ đánh giá sẽ chạy như một tác vụ chuyên dụng của bộ đánh giá. Để biết thêm thông tin, hãy xem hướng dẫn di chuyển về đào tạo phân tán .

tf1.estimator.train_and_evaluate(estimator=classifier,
                                train_spec=train_spec,
                                eval_spec=eval_spec)
INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Running training and evaluation locally (non-distributed).
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:397: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_queue_runner.py:65: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_functions.py:491: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/monitored_session.py:914: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpv82biaa9/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 118.02926, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10...
INFO:tensorflow:Saving checkpoints for 10 into /tmp/tmpv82biaa9/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-19T02:31:38
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpv82biaa9/model.ckpt-10
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.29827s
INFO:tensorflow:Finished evaluation at 2022-01-19-02:31:38
INFO:tensorflow:Saving dict for global step 10: accuracy = 0.4953125, average_loss = 1.8270489, global_step = 10, loss = 233.86226
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 10: /tmp/tmpv82biaa9/model.ckpt-10
INFO:tensorflow:Loss for final step: 92.23195.
({'accuracy': 0.4953125,
  'average_loss': 1.8270489,
  'loss': 233.86226,
  'global_step': 10},
 [])

TensorFlow 2: Đánh giá mô hình Keras

Trong TensorFlow 2, nếu bạn sử dụng API Model.fit để đào tạo, bạn có thể đánh giá mô hình bằng tf.keras.utils.SidecarEvaluator . Bạn cũng có thể hình dung các số liệu đánh giá trong Tensorboard không được hiển thị trong hướng dẫn này.

Để giúp chứng minh điều này, trước tiên hãy bắt đầu bằng cách xác định và đào tạo mô hình:

def create_model():
  return tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10)
  ])

loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

model = create_model()
model.compile(optimizer='adam',
              loss=loss,
              metrics=['accuracy'],
              steps_per_execution=10,
              run_eagerly=True)

log_dir = tempfile.mkdtemp()
model_checkpoint = tf.keras.callbacks.ModelCheckpoint(
    filepath=os.path.join(log_dir, 'ckpt-{epoch}'),
    save_weights_only=True)

model.fit(x=x_train,
          y=y_train,
          epochs=1,
          callbacks=[model_checkpoint])
1875/1875 [==============================] - 27s 14ms/step - loss: 0.2202 - accuracy: 0.9350
<keras.callbacks.History at 0x7f534c8dbed0>

Sau đó, đánh giá mô hình bằng tf.keras.utils.SidecarEvaluator . Trong đào tạo thực sự, nên sử dụng một công việc riêng biệt để tiến hành đánh giá nhằm giải phóng nguồn nhân lực cho việc đào tạo.

data = tf.data.Dataset.from_tensor_slices((x_test, y_test))
data = data.batch(64)

tf.keras.utils.SidecarEvaluator(
    model=model,
    data=data,
    checkpoint_dir=log_dir,
    max_evaluations=1
).start()
INFO:tensorflow:Waiting for new checkpoint at /tmp/tmpl6y5s71p
INFO:tensorflow:Found new checkpoint at /tmp/tmpl6y5s71p/ckpt-1
INFO:tensorflow:Evaluation starts: Model weights loaded from latest checkpoint file /tmp/tmpl6y5s71p/ckpt-1
157/157 - 2s - loss: 0.1006 - accuracy: 0.9697 - 2s/epoch - 10ms/step
INFO:tensorflow:End of evaluation. Metrics: loss=0.10060054063796997 accuracy=0.9696999788284302
INFO:tensorflow:Last checkpoint evaluated. SidecarEvaluator stops.

Bước tiếp theo