Annotate a tf.keras
layer to be quantized.
tfmot.quantization.keras.quantize_annotate_layer(
to_annotate, quantize_config=None
)
Used in the notebooks
Used in the guide |
---|
This function does not actually quantize the layer. It is merely used to
specify that the layer should be quantized. The layer then gets quantized
accordingly when quantize_apply
is used.
This method should be used when the user wants to quantize only certain layers of the model, or change the default behavior of how a layer is quantized.
Annotate a layer:
model = keras.Sequential([
layers.Dense(10, activation='relu', input_shape=(100,)),
quantize_annotate_layer(layers.Dense(2, activation='sigmoid'))
])
# Only the second Dense layer is quantized.
quantized_model = quantize_apply(model)
Args | |
---|---|
to_annotate
|
tf.keras layer which needs to be quantized.
|
quantize_config
|
optional QuantizeConfig which controls how the layer is
quantized. In its absence, the default behavior for the layer is used.
|
Returns | |
---|---|
tf.keras layer wrapped with QuantizeAnnotate .
|