Strips clustering wrappers from the model.
tfmot.clustering.keras.strip_clustering(
model
)
Used in the notebooks
Used in the guide |
---|
Once a model has been clustered, this method can be used to restore the original model with the clustered weights.
Only sequential and functional models are supported for now.
Arguments | |
---|---|
model
|
A tf.keras.Model instance with clustered layers.
|
Returns | |
---|---|
A keras model with clustering wrappers removed. |
Raises | |
---|---|
ValueError
|
if the model is not a tf.keras.Model instance.
|
NotImplementedError
|
if the model is a subclass model. |
Usage:
orig_model = tf.keras.Model(inputs, outputs)
clustered_model = cluster_weights(orig_model)
exported_model = strip_clustering(clustered_model)
The exported_model and the orig_model have the same structure.