Visualizza su TensorFlow.org | Esegui in Google Colab | Visualizza su GitHub | Scarica quaderno |
Sfondo
Questo quaderno mostra come generare una scheda modello utilizzando Model Card Toolkit con un modello scikit-learn in un ambiente Jupyter/Colab. È possibile saperne di più su modelli di tessere a https://modelcards.withgoogle.com/about .
Impostare
Per prima cosa dobbiamo installare e importare i pacchetti necessari.
Esegui l'upgrade a Pip 20.2 e installa i pacchetti
pip install -q --upgrade pip==20.2
pip install -q -U seaborn scikit-learn model-card-toolkit
Hai riavviato il runtime?
Se stai utilizzando Google Colab, la prima volta che esegui la cella sopra, devi riavviare il runtime (Runtime > Riavvia runtime ...).
Importa pacchetti
Importiamo i pacchetti necessari, incluso scikit-learn.
from datetime import date
from io import BytesIO
from IPython import display
from model_card_toolkit import ModelCardToolkit
from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import plot_roc_curve, plot_confusion_matrix
import base64
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import uuid
Caricare dati
Questo esempio utilizza il Breast Cancer Wisconsin diagnostica set di dati che scikit-learn può caricare con il load_breast_cancer () la funzione.
cancer = load_breast_cancer()
X = pd.DataFrame(cancer.data, columns=cancer.feature_names)
y = pd.Series(cancer.target)
X_train, X_test, y_train, y_test = train_test_split(X, y)
X_train.head()
y_train.head()
28 0 157 1 381 1 436 1 71 1 dtype: int64
Dati della trama
Creeremo diversi grafici dai dati che includeremo nella scheda modello.
# Utility function that will export a plot to a base-64 encoded string that the model card will accept.
def plot_to_str():
img = BytesIO()
plt.savefig(img, format='png')
return base64.encodebytes(img.getvalue()).decode('utf-8')
# Plot the mean radius feature for both the train and test sets
sns.displot(x=X_train['mean radius'], hue=y_train)
mean_radius_train = plot_to_str()
sns.displot(x=X_test['mean radius'], hue=y_test)
mean_radius_test = plot_to_str()
# Plot the mean texture feature for both the train and test sets
sns.displot(x=X_train['mean texture'], hue=y_train)
mean_texture_train = plot_to_str()
sns.displot(x=X_test['mean texture'], hue=y_test)
mean_texture_test = plot_to_str()
Modello di treno
# Create a classifier and fit the training data
clf = GradientBoostingClassifier().fit(X_train, y_train)
Valuta il modello
# Plot a ROC curve
plot_roc_curve(clf, X_test, y_test)
roc_curve = plot_to_str()
# Plot a confusion matrix
plot_confusion_matrix(clf, X_test, y_test)
confusion_matrix = plot_to_str()
Crea una scheda modello
Inizializza toolkit e scheda modello
mct = ModelCardToolkit()
model_card = mct.scaffold_assets()
Annota le informazioni nella scheda modello
model_card.model_details.name = 'Breast Cancer Wisconsin (Diagnostic) Dataset'
model_card.model_details.overview = (
'This model predicts whether breast cancer is benign or malignant based on '
'image measurements.')
model_card.model_details.owners = [
{'name': 'Model Cards Team', 'contact': 'model-cards@google.com'}
]
model_card.model_details.references = [
'https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)',
'https://minds.wisconsin.edu/bitstream/handle/1793/59692/TR1131.pdf'
]
model_card.model_details.version.name = str(uuid.uuid4())
model_card.model_details.version.date = str(date.today())
model_card.considerations.ethical_considerations = [{
'name': ('Manual selection of image sections to digitize could create '
'selection bias'),
'mitigation_strategy': 'Automate the selection process'
}]
model_card.considerations.limitations = ['Breast cancer diagnosis']
model_card.considerations.use_cases = ['Breast cancer diagnosis']
model_card.considerations.users = ['Medical professionals', 'ML researchers']
model_card.model_parameters.data.train.graphics.description = (
f'{len(X_train)} rows with {len(X_train.columns)} features')
model_card.model_parameters.data.train.graphics.collection = [
{'image': mean_radius_train},
{'image': mean_texture_train}
]
model_card.model_parameters.data.eval.graphics.description = (
f'{len(X_test)} rows with {len(X_test.columns)} features')
model_card.model_parameters.data.eval.graphics.collection = [
{'image': mean_radius_test},
{'image': mean_texture_test}
]
model_card.quantitative_analysis.graphics.description = (
'ROC curve and confusion matrix')
model_card.quantitative_analysis.graphics.collection = [
{'image': roc_curve},
{'image': confusion_matrix}
]
mct.update_model_card_json(model_card)
Genera scheda modello
# Return the model card document as an HTML page
html = mct.export_format()
display.display(display.HTML(html))