View on TensorFlow.org | 在 Google Colab 中运行 | 在 GitHub 上查看源代码 | 下载笔记本 | 查看 TF Hub 模型 |
本 Colab 使用 SentEval 工具套件演示 Universal Sentence Encoder CMLM 模型,该工具套件是用于测量句子嵌入质量的库。SentEval 工具套件包括一组多样化的下游任务,能够评估嵌入模型的泛化能力并评估编码的语言属性。
运行前两个代码块设置环境,在第三个代码块中,可以选择一个 SentEval 任务来评估模型。建议使用 GPU 运行时来运行本 Colab。
要了解有关 Universal Sentence Encoder CMLM 模型的更多信息,请参阅 https://openreview.net/forum?id=WDVD4lUCTzU。
Install dependencies
pip install --quiet "tensorflow-text==2.8.*"
pip install --quiet torch==1.8.1
下载 SentEval 和任务数据
本步骤从 github 下载 SentEval 并执行数据脚本下载任务数据。可能需要长达 5 分钟的时间才能完成。
Install SentEval and download task data
rm -rf ./SentEval
git clone https://github.com/facebookresearch/SentEval.git
cd $PWD/SentEval/data/downstream && bash get_transfer_data.bash > /dev/null 2>&1
Cloning into 'SentEval'... remote: Enumerating objects: 691, done. remote: Counting objects: 100% (2/2), done. remote: Compressing objects: 100% (2/2), done. remote: Total 691 (delta 0), reused 2 (delta 0), pack-reused 689 Receiving objects: 100% (691/691), 33.25 MiB | 28.21 MiB/s, done. Resolving deltas: 100% (434/434), done.
执行 SentEval 评估任务 以下代码块执行 SentEval 任务并输出结果,选择以下任务之一来评估 USE CMLM 模型:
MR CR SUBJ MPQA SST TREC MRPC SICK-E
选择要运行的模型、参数和任务。可以使用 rapid prototyping 参数减少计算时间以更快获得结果。
使用 'rapid prototyping' 参数完成任务通常需要 5-15 分钟,使用 'slower, best performance' 参数最多需要一个小时。
params = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 5}
params['classifier'] = {'nhid': 0, 'optim': 'rmsprop', 'batch_size': 128,
'tenacity': 3, 'epoch_size': 2}
要获得更好的结果,请使用较慢的 'slower, best performance' 参数,计算时间可能长达 1 小时:
params = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 10}
params['classifier'] = {'nhid': 0, 'optim': 'adam', 'batch_size': 16,
'tenacity': 5, 'epoch_size': 6}
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import sys
sys.path.append(f'{os.getcwd()}/SentEval')
import tensorflow as tf
# Prevent TF from claiming all GPU memory so there is some left for pytorch.
gpus = tf.config.list_physical_devices('GPU')
if gpus:
# Memory growth needs to be the same across GPUs.
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
import tensorflow_hub as hub
import tensorflow_text
import senteval
import time
PATH_TO_DATA = f'{os.getcwd()}/SentEval/data'
MODEL = 'https://tfhub.dev/google/universal-sentence-encoder-cmlm/en-base/1'
PARAMS = 'rapid prototyping'
TASK = 'CR'
params_prototyping = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 5}
params_prototyping['classifier'] = {'nhid': 0, 'optim': 'rmsprop', 'batch_size': 128,
'tenacity': 3, 'epoch_size': 2}
params_best = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 10}
params_best['classifier'] = {'nhid': 0, 'optim': 'adam', 'batch_size': 16,
'tenacity': 5, 'epoch_size': 6}
params = params_best if PARAMS == 'slower, best performance' else params_prototyping
preprocessor = hub.KerasLayer(
"https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3")
encoder = hub.KerasLayer(
"https://tfhub.dev/google/universal-sentence-encoder-cmlm/en-base/1")
inputs = tf.keras.Input(shape=tf.shape(''), dtype=tf.string)
outputs = encoder(preprocessor(inputs))
model = tf.keras.Model(inputs=inputs, outputs=outputs)
def prepare(params, samples):
return
def batcher(_, batch):
batch = [' '.join(sent) if sent else '.' for sent in batch]
return model.predict(tf.constant(batch))["default"]
se = senteval.engine.SE(params, batcher, prepare)
print("Evaluating task %s with %s parameters" % (TASK, PARAMS))
start = time.time()
results = se.eval(TASK)
end = time.time()
print('Time took on task %s : %.1f. seconds' % (TASK, end - start))
print(results)
Evaluating task CR with rapid prototyping parameters Time took on task CR : 53.0. seconds {'devacc': 90.42, 'acc': 88.98, 'ndev': 3775, 'ntest': 3775}
了解更多
- 在 TensorFlow Hub 上查找更多文本嵌入模型
- 另请参阅 多语言 Universal Sentence Encoder CMLM 模型
- 查看其他 Universal Sentence Encoder 模型
参考
- Ziyi Yang, Yinfei Yang, Daniel Cer, Jax Law, Eric Darve. Universal Sentence Representations Learning with Conditional Masked Language Model. November 2020