New! Use Simple ML for Sheets to apply machine learning to the data in your Google Sheets
Read More
tfdf.tuner.SearchSpace
Stay organized with collections
Save and categorize content based on your preferences.
Set of hyperparameter and their respective possible values.
tfdf.tuner.SearchSpace(
fields: Fields,
parent_values: Optional[hyperparameter_pb2.HyperParameterSpace.DiscreteCandidates] = None
)
The user is not expected to create a "SearchSpace" object directly. Instead,
SearchSpace object are instantiated by tuners.
Methods
choice
View source
choice(
key: str,
values: Union[List[int], List[float], List[str], List[bool]],
merge: bool = False
) -> 'SearchSpace'
Adds a hyperparameter with a list of possible values.
Args |
key
|
Name of the hyper-parameter.
|
values
|
List of possible value for the hyperparameter.
|
merge
|
If false (default), raises an error if the hyper-parameter already
exist. If true, adds values to the parameter if it already exist.
|
Returns |
The conditional SearchSpace corresponding to the values in "values".
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tfdf.tuner.SearchSpace\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/decision-forests/blob/main/tensorflow_decision_forests/component/tuner/tuner.py#L67-L139) |\n\nSet of hyperparameter and their respective possible values. \n\n tfdf.tuner.SearchSpace(\n fields: Fields,\n parent_values: Optional[hyperparameter_pb2.HyperParameterSpace.DiscreteCandidates] = None\n )\n\nThe user is not expected to create a \"SearchSpace\" object directly. Instead,\nSearchSpace object are instantiated by tuners.\n\nMethods\n-------\n\n### `choice`\n\n[View source](https://github.com/tensorflow/decision-forests/blob/main/tensorflow_decision_forests/component/tuner/tuner.py#L82-L130) \n\n choice(\n key: str,\n values: Union[List[int], List[float], List[str], List[bool]],\n merge: bool = False\n ) -\u003e 'SearchSpace'\n\nAdds a hyperparameter with a list of possible values.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|--------------------------------------------------------------------------------------------------------------------------------------|\n| `key` | Name of the hyper-parameter. |\n| `values` | List of possible value for the hyperparameter. |\n| `merge` | If false (default), raises an error if the hyper-parameter already exist. If true, adds values to the parameter if it already exist. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| The conditional SearchSpace corresponding to the values in \"values\". ||\n\n\u003cbr /\u003e"]]