在 TensorFlow.org 上查看 | 在 Google Colab 运行 | 在 Github 上查看源代码 | 下载笔记本 |
持续保存“最佳”模型或模型权重/参数有许多好处,包括能够跟踪训练进度并从不同的保存状态加载保存的模型。
在 TensorFlow 1 中,要使用 tf.estimator.Estimator
API 在训练/验证期间配置检查点保存,可以在 tf.estimator.RunConfig
中指定计划或使用 tf.estimator.CheckpointSaverHook
。本指南演示了如何从该工作流迁移到 TensorFlow 2 Keras API。
在 TensorFlow 2 中,可以通过多种方式配置 tf.keras.callbacks.ModelCheckpoint
:
- 根据使用
save_best_only=True
参数监视的指标保存“最佳”版本,其中monitor
可以是'loss'
、'val_loss'
、'accuracy'
或 'val_accuracy'`。 - 以特定频率持续保存(使用
save_freq
参数)。 - 通过将
save_weights_only
设置为True
,仅保存权重/参数而不是整个模型。
有关详情,请参阅 tf.keras.callbacks.ModelCheckpoint
API 文档和保存和加载模型教程中的训练期间保存检查点部分。在保存和加载 Keras 模型指南中的 TF 检查点格式部分中详细了解检查点格式。另外,要添加容错,可以使用 tf.keras.callbacks.BackupAndRestore
或 tf.train.Checkpoint
手动设置检查点。在容错迁移指南中了解详情。
Keras 回调是在内置 Keras Model.fit
/Model.evaluate
/Model.predict
API 中的训练/评估/预测期间的不同点调用的对象。请在指南末尾的后续步骤部分中了解详情。
安装
从导入和用于演示目的的简单数据集开始:
import tensorflow.compat.v1 as tf1
import tensorflow as tf
import numpy as np
import tempfile
2022-12-14 20:42:49.695528: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory 2022-12-14 20:42:49.695617: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory 2022-12-14 20:42:49.695626: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
TensorFlow 1:使用 tf.estimator API 保存检查点
此 TensorFlow 1 示例展示了如何配置 tf.estimator.RunConfig
以在使用 tf.estimator.Estimator
API 进行训练/评估期间的每一步保存检查点:
feature_columns = [tf1.feature_column.numeric_column("x", shape=[28, 28])]
config = tf1.estimator.RunConfig(save_summary_steps=1,
save_checkpoints_steps=1)
path = tempfile.mkdtemp()
classifier = tf1.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[256, 32],
optimizer=tf1.train.AdamOptimizer(0.001),
n_classes=10,
dropout=0.2,
model_dir=path,
config = config
)
train_input_fn = tf1.estimator.inputs.numpy_input_fn(
x={"x": x_train},
y=y_train.astype(np.int32),
num_epochs=10,
batch_size=50,
shuffle=True,
)
test_input_fn = tf1.estimator.inputs.numpy_input_fn(
x={"x": x_test},
y=y_test.astype(np.int32),
num_epochs=10,
shuffle=False
)
train_spec = tf1.estimator.TrainSpec(input_fn=train_input_fn, max_steps=10)
eval_spec = tf1.estimator.EvalSpec(input_fn=test_input_fn,
steps=10,
throttle_secs=0)
tf1.estimator.train_and_evaluate(estimator=classifier,
train_spec=train_spec,
eval_spec=eval_spec)
INFO:tensorflow:Using config: {'_model_dir': '/tmpfs/tmp/tmp9t2mhb2d', '_tf_random_seed': None, '_save_summary_steps': 1, '_save_checkpoints_steps': 1, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} WARNING:tensorflow:From /tmpfs/tmp/ipykernel_44833/3980459272.py:18: The name tf.estimator.inputs is deprecated. Please use tf.compat.v1.estimator.inputs instead. WARNING:tensorflow:From /tmpfs/tmp/ipykernel_44833/3980459272.py:18: The name tf.estimator.inputs.numpy_input_fn is deprecated. Please use tf.compat.v1.estimator.inputs.numpy_input_fn instead. INFO:tensorflow:Not using Distribute Coordinator. INFO:tensorflow:Running training and evaluation locally (non-distributed). INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 1 or save_checkpoints_secs None. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/training_util.py:396: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_queue_runner.py:60: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_functions.py:491: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/monitored_session.py:910: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. 2022-12-14 20:42:55.529293: W tensorflow/core/common_runtime/type_inference.cc:339] Type inference failed. This indicates an invalid graph that escaped type checking. Error message: INVALID_ARGUMENT: expected compatible input types, but input 1: type_id: TFT_OPTIONAL args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_INT64 } } } is neither a subtype nor a supertype of the combined inputs preceding it: type_id: TFT_OPTIONAL args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_INT32 } } } while inferring type of node 'dnn/zero_fraction/cond/output/_18' INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmpfs/tmp/tmp9t2mhb2d/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1... INFO:tensorflow:Saving checkpoints for 1 into /tmpfs/tmp/tmp9t2mhb2d/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:42:56 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-1 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.29589s INFO:tensorflow:Finished evaluation at 2022-12-14-20:42:56 INFO:tensorflow:Saving dict for global step 1: accuracy = 0.14765625, average_loss = 2.3110993, global_step = 1, loss = 295.8207 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 1: /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-1 INFO:tensorflow:loss = 118.449585, step = 0 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 2... INFO:tensorflow:Saving checkpoints for 2 into /tmpfs/tmp/tmp9t2mhb2d/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 2... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:42:57 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-2 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.29818s INFO:tensorflow:Finished evaluation at 2022-12-14-20:42:57 INFO:tensorflow:Saving dict for global step 2: accuracy = 0.1921875, average_loss = 2.248653, global_step = 2, loss = 287.82758 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 2: /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-2 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 3... INFO:tensorflow:Saving checkpoints for 3 into /tmpfs/tmp/tmp9t2mhb2d/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 3... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:42:57 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-3 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.29778s INFO:tensorflow:Finished evaluation at 2022-12-14-20:42:58 INFO:tensorflow:Saving dict for global step 3: accuracy = 0.234375, average_loss = 2.202866, global_step = 3, loss = 281.96686 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 3: /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-3 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4... INFO:tensorflow:Saving checkpoints for 4 into /tmpfs/tmp/tmp9t2mhb2d/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:42:58 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-4 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.30090s INFO:tensorflow:Finished evaluation at 2022-12-14-20:42:58 INFO:tensorflow:Saving dict for global step 4: accuracy = 0.31640625, average_loss = 2.162916, global_step = 4, loss = 276.85324 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 4: /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-4 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 5... INFO:tensorflow:Saving checkpoints for 5 into /tmpfs/tmp/tmp9t2mhb2d/model.ckpt. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/saver.py:1064: remove_checkpoint (from tensorflow.python.checkpoint.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to delete files with this prefix. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 5... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:42:59 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-5 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.29170s INFO:tensorflow:Finished evaluation at 2022-12-14-20:42:59 INFO:tensorflow:Saving dict for global step 5: accuracy = 0.37578124, average_loss = 2.1222653, global_step = 5, loss = 271.64996 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 5: /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-5 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 6... INFO:tensorflow:Saving checkpoints for 6 into /tmpfs/tmp/tmp9t2mhb2d/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 6... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:42:59 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-6 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.29652s INFO:tensorflow:Finished evaluation at 2022-12-14-20:42:59 INFO:tensorflow:Saving dict for global step 6: accuracy = 0.42890626, average_loss = 2.0763998, global_step = 6, loss = 265.77917 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 6: /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-6 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 7... INFO:tensorflow:Saving checkpoints for 7 into /tmpfs/tmp/tmp9t2mhb2d/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 7... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:43:00 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-7 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.29004s INFO:tensorflow:Finished evaluation at 2022-12-14-20:43:00 INFO:tensorflow:Saving dict for global step 7: accuracy = 0.45234376, average_loss = 2.0237553, global_step = 7, loss = 259.04068 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 7: /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-7 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 8... INFO:tensorflow:Saving checkpoints for 8 into /tmpfs/tmp/tmp9t2mhb2d/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 8... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:43:00 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-8 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.29159s INFO:tensorflow:Finished evaluation at 2022-12-14-20:43:01 INFO:tensorflow:Saving dict for global step 8: accuracy = 0.4609375, average_loss = 1.9725058, global_step = 8, loss = 252.48074 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 8: /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-8 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 9... INFO:tensorflow:Saving checkpoints for 9 into /tmpfs/tmp/tmp9t2mhb2d/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 9... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:43:01 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-9 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.30247s INFO:tensorflow:Finished evaluation at 2022-12-14-20:43:01 INFO:tensorflow:Saving dict for global step 9: accuracy = 0.46171874, average_loss = 1.9281521, global_step = 9, loss = 246.80347 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 9: /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-9 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10... INFO:tensorflow:Saving checkpoints for 10 into /tmpfs/tmp/tmp9t2mhb2d/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:43:02 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-10 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.28789s INFO:tensorflow:Finished evaluation at 2022-12-14-20:43:02 INFO:tensorflow:Saving dict for global step 10: accuracy = 0.4625, average_loss = 1.8868959, global_step = 10, loss = 241.52267 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 10: /tmpfs/tmp/tmp9t2mhb2d/model.ckpt-10 INFO:tensorflow:Loss for final step: 94.11531. ({'accuracy': 0.4625, 'average_loss': 1.8868959, 'loss': 241.52267, 'global_step': 10}, [])
%ls {classifier.model_dir}
checkpoint eval/ events.out.tfevents.1671050575.kokoro-gcp-ubuntu-prod-129375217 graph.pbtxt model.ckpt-10.data-00000-of-00001 model.ckpt-10.index model.ckpt-10.meta model.ckpt-6.data-00000-of-00001 model.ckpt-6.index model.ckpt-6.meta model.ckpt-7.data-00000-of-00001 model.ckpt-7.index model.ckpt-7.meta model.ckpt-8.data-00000-of-00001 model.ckpt-8.index model.ckpt-8.meta model.ckpt-9.data-00000-of-00001 model.ckpt-9.index model.ckpt-9.meta
TensorFlow 2:使用 Model.fit 的 Keras 回调保存检查点
在 TensorFlow 2 中,使用内置 Keras Model.fit
(或 Model.evaluate
)进行训练/评估时,可以配置 tf.keras.callbacks.ModelCheckpoint
,然后将其传递给 Model.fit
(或 Model.evaluate
)的 callbacks
参数。(请在 API 文档和使用内置方法进行训练和评估指南中的使用回调部分中了解详情。)
在下面的示例中,您将使用 tf.keras.callbacks.ModelCheckpoint
回调将检查点存储在临时目录中:
def create_model():
return tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model = create_model()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'],
steps_per_execution=10)
log_dir = tempfile.mkdtemp()
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=log_dir)
model.fit(x=x_train,
y=y_train,
epochs=10,
validation_data=(x_test, y_test),
callbacks=[model_checkpoint_callback])
Epoch 1/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.2198 - accuracy: 0.9358INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpu4b5x9h0/assets 1875/1875 [==============================] - 5s 2ms/step - loss: 0.2189 - accuracy: 0.9360 - val_loss: 0.1039 - val_accuracy: 0.9670 Epoch 2/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0959 - accuracy: 0.9707INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpu4b5x9h0/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0955 - accuracy: 0.9708 - val_loss: 0.0815 - val_accuracy: 0.9761 Epoch 3/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0704 - accuracy: 0.9782INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpu4b5x9h0/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0702 - accuracy: 0.9783 - val_loss: 0.0832 - val_accuracy: 0.9730 Epoch 4/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0516 - accuracy: 0.9831INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpu4b5x9h0/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0517 - accuracy: 0.9831 - val_loss: 0.0610 - val_accuracy: 0.9807 Epoch 5/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0437 - accuracy: 0.9854INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpu4b5x9h0/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0437 - accuracy: 0.9854 - val_loss: 0.0664 - val_accuracy: 0.9798 Epoch 6/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0354 - accuracy: 0.9884INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpu4b5x9h0/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0355 - accuracy: 0.9884 - val_loss: 0.0718 - val_accuracy: 0.9788 Epoch 7/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0306 - accuracy: 0.9897INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpu4b5x9h0/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0305 - accuracy: 0.9897 - val_loss: 0.0668 - val_accuracy: 0.9814 Epoch 8/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0282 - accuracy: 0.9905INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpu4b5x9h0/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0282 - accuracy: 0.9905 - val_loss: 0.0778 - val_accuracy: 0.9790 Epoch 9/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0246 - accuracy: 0.9916INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpu4b5x9h0/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0246 - accuracy: 0.9916 - val_loss: 0.0734 - val_accuracy: 0.9815 Epoch 10/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0230 - accuracy: 0.9920INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpu4b5x9h0/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0230 - accuracy: 0.9920 - val_loss: 0.0653 - val_accuracy: 0.9846 <keras.callbacks.History at 0x7f0430034f70>
%ls {model_checkpoint_callback.filepath}
assets/ fingerprint.pb keras_metadata.pb saved_model.pb variables/
后续步骤
在以下资源中详细了解检查点:
- API 文档:
tf.keras.callbacks.ModelCheckpoint
- 教程:保存和加载模型(训练期间保存检查点部分)
- 指南:保存和加载 Keras 模型(TF 检查点格式部分)
以下资源中详细了解回调:
- API 文档:
tf.keras.callbacks.Callback
- 指南:编写自己的回调
- 指南:使用内置方法进行训练和评估(使用回调部分)
此外,您可能还会发现下列与迁移相关的资源十分有用:
- 容错迁移指南:用于
Model.fit
的tf.keras.callbacks.BackupAndRestore
,或用于自定义训练循环的tf.train.Checkpoint
和tf.train.CheckpointManager
API - 提前停止迁移指南:
tf.keras.callbacks.EarlyStopping
是一个内置的提前停止回调 - TensorBoard 迁移指南:TensorBoard 支持跟踪和显示指标
- LoggingTensorHook 和 StopAtStepHook 到 Keras 回调迁移指南
- Keras 回调的 SessionRunHook 指南