在 TensorFlow.org上查看 | 在 Google Colab 中运行 | 在 GitHub 上查看源代码 | 下载笔记本 | 查看 TF Hub 模型 |
MoveNet 是一个超快且准确的模型,可检测身体的 17 个关键点。该模型在 TF Hub 上提供两种变体,分别为 Lightning 和 Thunder。Lightning 用于延迟关键型应用,而 Thunder 用于需要高准确性的应用。在大多数现代台式机、笔记本电脑和手机上,这两种模型的运行速度都快于实时 (30+ FPS),这对于实时的健身、健康和保健应用至关重要。
*图像下载自 Pexels (https://www.pexels.com/)
本 Colab 将详细介绍如何加载 MoveNet,并对下面的输入图像和视频运行推断。
注:请查看实时演示以了解该模型的工作原理!
使用 MoveNet 进行人体姿态估计
可视化库和导入
pip install -q imageio
pip install -q opencv-python
pip install -q git+https://github.com/tensorflow/docs
import tensorflow as tf
import tensorflow_hub as hub
from tensorflow_docs.vis import embed
import numpy as np
import cv2
# Import matplotlib libraries
from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection
import matplotlib.patches as patches
# Some modules to display an animation using imageio.
import imageio
from IPython.display import HTML, display
2022-12-14 21:01:05.561349: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory 2022-12-14 21:01:05.561447: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory 2022-12-14 21:01:05.561458: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
Helper functions for visualization
# Dictionary that maps from joint names to keypoint indices.
KEYPOINT_DICT = {
'nose': 0,
'left_eye': 1,
'right_eye': 2,
'left_ear': 3,
'right_ear': 4,
'left_shoulder': 5,
'right_shoulder': 6,
'left_elbow': 7,
'right_elbow': 8,
'left_wrist': 9,
'right_wrist': 10,
'left_hip': 11,
'right_hip': 12,
'left_knee': 13,
'right_knee': 14,
'left_ankle': 15,
'right_ankle': 16
}
# Maps bones to a matplotlib color name.
KEYPOINT_EDGE_INDS_TO_COLOR = {
(0, 1): 'm',
(0, 2): 'c',
(1, 3): 'm',
(2, 4): 'c',
(0, 5): 'm',
(0, 6): 'c',
(5, 7): 'm',
(7, 9): 'm',
(6, 8): 'c',
(8, 10): 'c',
(5, 6): 'y',
(5, 11): 'm',
(6, 12): 'c',
(11, 12): 'y',
(11, 13): 'm',
(13, 15): 'm',
(12, 14): 'c',
(14, 16): 'c'
}
def _keypoints_and_edges_for_display(keypoints_with_scores,
height,
width,
keypoint_threshold=0.11):
"""Returns high confidence keypoints and edges for visualization.
Args:
keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing
the keypoint coordinates and scores returned from the MoveNet model.
height: height of the image in pixels.
width: width of the image in pixels.
keypoint_threshold: minimum confidence score for a keypoint to be
visualized.
Returns:
A (keypoints_xy, edges_xy, edge_colors) containing:
* the coordinates of all keypoints of all detected entities;
* the coordinates of all skeleton edges of all detected entities;
* the colors in which the edges should be plotted.
"""
keypoints_all = []
keypoint_edges_all = []
edge_colors = []
num_instances, _, _, _ = keypoints_with_scores.shape
for idx in range(num_instances):
kpts_x = keypoints_with_scores[0, idx, :, 1]
kpts_y = keypoints_with_scores[0, idx, :, 0]
kpts_scores = keypoints_with_scores[0, idx, :, 2]
kpts_absolute_xy = np.stack(
[width * np.array(kpts_x), height * np.array(kpts_y)], axis=-1)
kpts_above_thresh_absolute = kpts_absolute_xy[
kpts_scores > keypoint_threshold, :]
keypoints_all.append(kpts_above_thresh_absolute)
for edge_pair, color in KEYPOINT_EDGE_INDS_TO_COLOR.items():
if (kpts_scores[edge_pair[0]] > keypoint_threshold and
kpts_scores[edge_pair[1]] > keypoint_threshold):
x_start = kpts_absolute_xy[edge_pair[0], 0]
y_start = kpts_absolute_xy[edge_pair[0], 1]
x_end = kpts_absolute_xy[edge_pair[1], 0]
y_end = kpts_absolute_xy[edge_pair[1], 1]
line_seg = np.array([[x_start, y_start], [x_end, y_end]])
keypoint_edges_all.append(line_seg)
edge_colors.append(color)
if keypoints_all:
keypoints_xy = np.concatenate(keypoints_all, axis=0)
else:
keypoints_xy = np.zeros((0, 17, 2))
if keypoint_edges_all:
edges_xy = np.stack(keypoint_edges_all, axis=0)
else:
edges_xy = np.zeros((0, 2, 2))
return keypoints_xy, edges_xy, edge_colors
def draw_prediction_on_image(
image, keypoints_with_scores, crop_region=None, close_figure=False,
output_image_height=None):
"""Draws the keypoint predictions on image.
Args:
image: A numpy array with shape [height, width, channel] representing the
pixel values of the input image.
keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing
the keypoint coordinates and scores returned from the MoveNet model.
crop_region: A dictionary that defines the coordinates of the bounding box
of the crop region in normalized coordinates (see the init_crop_region
function below for more detail). If provided, this function will also
draw the bounding box on the image.
output_image_height: An integer indicating the height of the output image.
Note that the image aspect ratio will be the same as the input image.
Returns:
A numpy array with shape [out_height, out_width, channel] representing the
image overlaid with keypoint predictions.
"""
height, width, channel = image.shape
aspect_ratio = float(width) / height
fig, ax = plt.subplots(figsize=(12 * aspect_ratio, 12))
# To remove the huge white borders
fig.tight_layout(pad=0)
ax.margins(0)
ax.set_yticklabels([])
ax.set_xticklabels([])
plt.axis('off')
im = ax.imshow(image)
line_segments = LineCollection([], linewidths=(4), linestyle='solid')
ax.add_collection(line_segments)
# Turn off tick labels
scat = ax.scatter([], [], s=60, color='#FF1493', zorder=3)
(keypoint_locs, keypoint_edges,
edge_colors) = _keypoints_and_edges_for_display(
keypoints_with_scores, height, width)
line_segments.set_segments(keypoint_edges)
line_segments.set_color(edge_colors)
if keypoint_edges.shape[0]:
line_segments.set_segments(keypoint_edges)
line_segments.set_color(edge_colors)
if keypoint_locs.shape[0]:
scat.set_offsets(keypoint_locs)
if crop_region is not None:
xmin = max(crop_region['x_min'] * width, 0.0)
ymin = max(crop_region['y_min'] * height, 0.0)
rec_width = min(crop_region['x_max'], 0.99) * width - xmin
rec_height = min(crop_region['y_max'], 0.99) * height - ymin
rect = patches.Rectangle(
(xmin,ymin),rec_width,rec_height,
linewidth=1,edgecolor='b',facecolor='none')
ax.add_patch(rect)
fig.canvas.draw()
image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
image_from_plot = image_from_plot.reshape(
fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
if output_image_height is not None:
output_image_width = int(output_image_height / height * width)
image_from_plot = cv2.resize(
image_from_plot, dsize=(output_image_width, output_image_height),
interpolation=cv2.INTER_CUBIC)
return image_from_plot
def to_gif(images, fps):
"""Converts image sequence (4D numpy array) to gif."""
imageio.mimsave('./animation.gif', images, fps=fps)
return embed.embed_file('./animation.gif')
def progress(value, max=100):
return HTML("""
<progress
value='{value}'
max='{max}',
style='width: 100%'
>
{value}
</progress>
""".format(value=value, max=max))
从 TF hub 加载模型
model_name = "movenet_lightning"
if "tflite" in model_name:
if "movenet_lightning_f16" in model_name:
!wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/float16/4?lite-format=tflite
input_size = 192
elif "movenet_thunder_f16" in model_name:
!wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/float16/4?lite-format=tflite
input_size = 256
elif "movenet_lightning_int8" in model_name:
!wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/int8/4?lite-format=tflite
input_size = 192
elif "movenet_thunder_int8" in model_name:
!wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/int8/4?lite-format=tflite
input_size = 256
else:
raise ValueError("Unsupported model name: %s" % model_name)
# Initialize the TFLite interpreter
interpreter = tf.lite.Interpreter(model_path="model.tflite")
interpreter.allocate_tensors()
def movenet(input_image):
"""Runs detection on an input image.
Args:
input_image: A [1, height, width, 3] tensor represents the input image
pixels. Note that the height/width should already be resized and match the
expected input resolution of the model before passing into this function.
Returns:
A [1, 1, 17, 3] float numpy array representing the predicted keypoint
coordinates and scores.
"""
# TF Lite format expects tensor type of uint8.
input_image = tf.cast(input_image, dtype=tf.uint8)
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
interpreter.set_tensor(input_details[0]['index'], input_image.numpy())
# Invoke inference.
interpreter.invoke()
# Get the model prediction.
keypoints_with_scores = interpreter.get_tensor(output_details[0]['index'])
return keypoints_with_scores
else:
if "movenet_lightning" in model_name:
module = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4")
input_size = 192
elif "movenet_thunder" in model_name:
module = hub.load("https://tfhub.dev/google/movenet/singlepose/thunder/4")
input_size = 256
else:
raise ValueError("Unsupported model name: %s" % model_name)
def movenet(input_image):
"""Runs detection on an input image.
Args:
input_image: A [1, height, width, 3] tensor represents the input image
pixels. Note that the height/width should already be resized and match the
expected input resolution of the model before passing into this function.
Returns:
A [1, 1, 17, 3] float numpy array representing the predicted keypoint
coordinates and scores.
"""
model = module.signatures['serving_default']
# SavedModel format expects tensor type of int32.
input_image = tf.cast(input_image, dtype=tf.int32)
# Run model inference.
outputs = model(input_image)
# Output is a [1, 1, 17, 3] tensor.
keypoints_with_scores = outputs['output_0'].numpy()
return keypoints_with_scores
单个图像示例
本节演示对单个图像运行模型以预测 17 个人体关键点的最小工作示例。
加载输入图像
curl -o input_image.jpeg https://images.pexels.com/photos/4384679/pexels-photo-4384679.jpeg --silent
# Load the input image.
image_path = 'input_image.jpeg'
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image)
运行推断
# Resize and pad the image to keep the aspect ratio and fit the expected size.
input_image = tf.expand_dims(image, axis=0)
input_image = tf.image.resize_with_pad(input_image, input_size, input_size)
# Run model inference.
keypoints_with_scores = movenet(input_image)
# Visualize the predictions with image.
display_image = tf.expand_dims(image, axis=0)
display_image = tf.cast(tf.image.resize_with_pad(
display_image, 1280, 1280), dtype=tf.int32)
output_overlay = draw_prediction_on_image(
np.squeeze(display_image.numpy(), axis=0), keypoints_with_scores)
plt.figure(figsize=(5, 5))
plt.imshow(output_overlay)
_ = plt.axis('off')
视频(图像序列)示例
本节演示当输入为帧序列时,如何根据前一帧的检测结果应用智能裁剪。这样模型可以将注意力和资源投入到主要主题上,从而在不牺牲速度的情况下获得更好的预测质量。
Cropping Algorithm
# Confidence score to determine whether a keypoint prediction is reliable.
MIN_CROP_KEYPOINT_SCORE = 0.2
def init_crop_region(image_height, image_width):
"""Defines the default crop region.
The function provides the initial crop region (pads the full image from both
sides to make it a square image) when the algorithm cannot reliably determine
the crop region from the previous frame.
"""
if image_width > image_height:
box_height = image_width / image_height
box_width = 1.0
y_min = (image_height / 2 - image_width / 2) / image_height
x_min = 0.0
else:
box_height = 1.0
box_width = image_height / image_width
y_min = 0.0
x_min = (image_width / 2 - image_height / 2) / image_width
return {
'y_min': y_min,
'x_min': x_min,
'y_max': y_min + box_height,
'x_max': x_min + box_width,
'height': box_height,
'width': box_width
}
def torso_visible(keypoints):
"""Checks whether there are enough torso keypoints.
This function checks whether the model is confident at predicting one of the
shoulders/hips which is required to determine a good crop region.
"""
return ((keypoints[0, 0, KEYPOINT_DICT['left_hip'], 2] >
MIN_CROP_KEYPOINT_SCORE or
keypoints[0, 0, KEYPOINT_DICT['right_hip'], 2] >
MIN_CROP_KEYPOINT_SCORE) and
(keypoints[0, 0, KEYPOINT_DICT['left_shoulder'], 2] >
MIN_CROP_KEYPOINT_SCORE or
keypoints[0, 0, KEYPOINT_DICT['right_shoulder'], 2] >
MIN_CROP_KEYPOINT_SCORE))
def determine_torso_and_body_range(
keypoints, target_keypoints, center_y, center_x):
"""Calculates the maximum distance from each keypoints to the center location.
The function returns the maximum distances from the two sets of keypoints:
full 17 keypoints and 4 torso keypoints. The returned information will be
used to determine the crop size. See determineCropRegion for more detail.
"""
torso_joints = ['left_shoulder', 'right_shoulder', 'left_hip', 'right_hip']
max_torso_yrange = 0.0
max_torso_xrange = 0.0
for joint in torso_joints:
dist_y = abs(center_y - target_keypoints[joint][0])
dist_x = abs(center_x - target_keypoints[joint][1])
if dist_y > max_torso_yrange:
max_torso_yrange = dist_y
if dist_x > max_torso_xrange:
max_torso_xrange = dist_x
max_body_yrange = 0.0
max_body_xrange = 0.0
for joint in KEYPOINT_DICT.keys():
if keypoints[0, 0, KEYPOINT_DICT[joint], 2] < MIN_CROP_KEYPOINT_SCORE:
continue
dist_y = abs(center_y - target_keypoints[joint][0]);
dist_x = abs(center_x - target_keypoints[joint][1]);
if dist_y > max_body_yrange:
max_body_yrange = dist_y
if dist_x > max_body_xrange:
max_body_xrange = dist_x
return [max_torso_yrange, max_torso_xrange, max_body_yrange, max_body_xrange]
def determine_crop_region(
keypoints, image_height,
image_width):
"""Determines the region to crop the image for the model to run inference on.
The algorithm uses the detected joints from the previous frame to estimate
the square region that encloses the full body of the target person and
centers at the midpoint of two hip joints. The crop size is determined by
the distances between each joints and the center point.
When the model is not confident with the four torso joint predictions, the
function returns a default crop which is the full image padded to square.
"""
target_keypoints = {}
for joint in KEYPOINT_DICT.keys():
target_keypoints[joint] = [
keypoints[0, 0, KEYPOINT_DICT[joint], 0] * image_height,
keypoints[0, 0, KEYPOINT_DICT[joint], 1] * image_width
]
if torso_visible(keypoints):
center_y = (target_keypoints['left_hip'][0] +
target_keypoints['right_hip'][0]) / 2;
center_x = (target_keypoints['left_hip'][1] +
target_keypoints['right_hip'][1]) / 2;
(max_torso_yrange, max_torso_xrange,
max_body_yrange, max_body_xrange) = determine_torso_and_body_range(
keypoints, target_keypoints, center_y, center_x)
crop_length_half = np.amax(
[max_torso_xrange * 1.9, max_torso_yrange * 1.9,
max_body_yrange * 1.2, max_body_xrange * 1.2])
tmp = np.array(
[center_x, image_width - center_x, center_y, image_height - center_y])
crop_length_half = np.amin(
[crop_length_half, np.amax(tmp)]);
crop_corner = [center_y - crop_length_half, center_x - crop_length_half];
if crop_length_half > max(image_width, image_height) / 2:
return init_crop_region(image_height, image_width)
else:
crop_length = crop_length_half * 2;
return {
'y_min': crop_corner[0] / image_height,
'x_min': crop_corner[1] / image_width,
'y_max': (crop_corner[0] + crop_length) / image_height,
'x_max': (crop_corner[1] + crop_length) / image_width,
'height': (crop_corner[0] + crop_length) / image_height -
crop_corner[0] / image_height,
'width': (crop_corner[1] + crop_length) / image_width -
crop_corner[1] / image_width
}
else:
return init_crop_region(image_height, image_width)
def crop_and_resize(image, crop_region, crop_size):
"""Crops and resize the image to prepare for the model input."""
boxes=[[crop_region['y_min'], crop_region['x_min'],
crop_region['y_max'], crop_region['x_max']]]
output_image = tf.image.crop_and_resize(
image, box_indices=[0], boxes=boxes, crop_size=crop_size)
return output_image
def run_inference(movenet, image, crop_region, crop_size):
"""Runs model inferece on the cropped region.
The function runs the model inference on the cropped region and updates the
model output to the original image coordinate system.
"""
image_height, image_width, _ = image.shape
input_image = crop_and_resize(
tf.expand_dims(image, axis=0), crop_region, crop_size=crop_size)
# Run model inference.
keypoints_with_scores = movenet(input_image)
# Update the coordinates.
for idx in range(17):
keypoints_with_scores[0, 0, idx, 0] = (
crop_region['y_min'] * image_height +
crop_region['height'] * image_height *
keypoints_with_scores[0, 0, idx, 0]) / image_height
keypoints_with_scores[0, 0, idx, 1] = (
crop_region['x_min'] * image_width +
crop_region['width'] * image_width *
keypoints_with_scores[0, 0, idx, 1]) / image_width
return keypoints_with_scores
加载输入图像序列
wget -q -O dance.gif https://github.com/tensorflow/tfjs-models/raw/master/pose-detection/assets/dance_input.gif
# Load the input image.
image_path = 'dance.gif'
image = tf.io.read_file(image_path)
image = tf.image.decode_gif(image)
使用裁剪算法运行推断
# Load the input image.
num_frames, image_height, image_width, _ = image.shape
crop_region = init_crop_region(image_height, image_width)
output_images = []
bar = display(progress(0, num_frames-1), display_id=True)
for frame_idx in range(num_frames):
keypoints_with_scores = run_inference(
movenet, image[frame_idx, :, :, :], crop_region,
crop_size=[input_size, input_size])
output_images.append(draw_prediction_on_image(
image[frame_idx, :, :, :].numpy().astype(np.int32),
keypoints_with_scores, crop_region=None,
close_figure=True, output_image_height=300))
crop_region = determine_crop_region(
keypoints_with_scores, image_height, image_width)
bar.update(progress(frame_idx, num_frames-1))
# Prepare gif visualization.
output = np.stack(output_images, axis=0)
to_gif(output, fps=10)