في هذا البرنامج التعليمي المستند إلى الكمبيوتر المحمول ، سننشئ خطوط أنابيب TFX ونشغلها للتحقق من صحة بيانات الإدخال وإنشاء نموذج ML. ويستند هذا الكمبيوتر الدفتري على خط أنابيب TFX بنينا في بسيط TFX خط أنابيب التعليمي . إذا لم تكن قد قرأت هذا البرنامج التعليمي حتى الآن ، فيجب عليك قراءته قبل المتابعة مع دفتر الملاحظات هذا.
تتمثل المهمة الأولى في أي مشروع علم بيانات أو مشروع ML في فهم البيانات وتنظيفها ، والتي تشمل:
- فهم أنواع البيانات والتوزيعات والمعلومات الأخرى (على سبيل المثال ، متوسط القيمة أو عدد العناصر الفريدة) حول كل ميزة
- إنشاء مخطط أولي يصف البيانات
- تحديد الانحرافات والقيم المفقودة في البيانات فيما يتعلق بمخطط معين
في هذا البرنامج التعليمي ، سننشئ خطي أنابيب TFX.
أولاً ، سننشئ خط أنابيب لتحليل مجموعة البيانات وإنشاء مخطط أولي لمجموعة البيانات المحددة. وسيشمل هذا الخط اثنين من عناصر جديدة، StatisticsGen
و SchemaGen
.
بمجرد أن يكون لدينا مخطط مناسب للبيانات ، سننشئ خط أنابيب لتدريب نموذج تصنيف ML بناءً على خط الأنابيب من البرنامج التعليمي السابق. في هذا الخط، وسوف نستخدم مخطط من خط الأنابيب الأول والعنصر الجديد، ExampleValidator
، للتحقق من صحة البيانات المدخلة.
المكونات الثلاثة الجديدة، StatisticsGen، SchemaGen وExampleValidator، هي مكونات TFX لتحليل البيانات والتحقق من صحة، وتنفيذها باستخدام TensorFlow بيانات التحقق من صحة مكتبة.
يرجى الاطلاع على فهم TFX خطوط الأنابيب لمعرفة المزيد عن مفاهيم مختلفة في TFX.
يثبت
نحتاج أولاً إلى تثبيت حزمة TFX Python وتنزيل مجموعة البيانات التي سنستخدمها لنموذجنا.
ترقية النقطة
لتجنب ترقية Pip في نظام عند التشغيل محليًا ، تحقق للتأكد من أننا نعمل في Colab. يمكن بالطبع ترقية الأنظمة المحلية بشكل منفصل.
try:
import colab
!pip install --upgrade pip
except:
pass
قم بتثبيت TFX
pip install -U tfx
هل أعدت تشغيل وقت التشغيل؟
إذا كنت تستخدم Google Colab ، في المرة الأولى التي تقوم فيها بتشغيل الخلية أعلاه ، يجب إعادة تشغيل وقت التشغيل بالنقر فوق الزر "RESTART RUNTIME" أعلاه أو باستخدام قائمة "Runtime> Restart runtime ...". هذا بسبب الطريقة التي يقوم بها كولاب بتحميل الحزم.
تحقق من إصدارات TensorFlow و TFX.
import tensorflow as tf
print('TensorFlow version: {}'.format(tf.__version__))
from tfx import v1 as tfx
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.6.2 TFX version: 1.4.0
قم بإعداد المتغيرات
هناك بعض المتغيرات المستخدمة لتحديد خط الأنابيب. يمكنك تخصيص هذه المتغيرات كما تريد. بشكل افتراضي ، سيتم إنشاء كل الإخراج من خط الأنابيب ضمن الدليل الحالي.
import os
# We will create two pipelines. One for schema generation and one for training.
SCHEMA_PIPELINE_NAME = "penguin-tfdv-schema"
PIPELINE_NAME = "penguin-tfdv"
# Output directory to store artifacts generated from the pipeline.
SCHEMA_PIPELINE_ROOT = os.path.join('pipelines', SCHEMA_PIPELINE_NAME)
PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME)
# Path to a SQLite DB file to use as an MLMD storage.
SCHEMA_METADATA_PATH = os.path.join('metadata', SCHEMA_PIPELINE_NAME,
'metadata.db')
METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db')
# Output directory where created models from the pipeline will be exported.
SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME)
from absl import logging
logging.set_verbosity(logging.INFO) # Set default logging level.
تحضير البيانات النموذجية
سنقوم بتنزيل نموذج مجموعة البيانات لاستخدامه في خط أنابيب TFX الخاص بنا. مجموعة البيانات التي نستخدمها هي بالمر البطاريق مجموعة البيانات التي تستخدم أيضا في غيرها من الأمثلة TFX .
توجد أربع سمات رقمية في مجموعة البيانات هذه:
- culmen_length_mm
- culmen_depth_mm
- الزعنفة_length_mm
- body_mass_g
تم بالفعل تسوية جميع الميزات ليكون لها نطاق [0،1]. سوف نبني نموذج التصنيف الذي يتنبأ species
من طيور البطريق.
نظرًا لأن مكون TFX ExampleGen يقرأ المدخلات من دليل ، نحتاج إلى إنشاء دليل ونسخ مجموعة البيانات إليه.
import urllib.request
import tempfile
DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data') # Create a temporary directory.
_data_url = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/data/labelled/penguins_processed.csv'
_data_filepath = os.path.join(DATA_ROOT, "data.csv")
urllib.request.urlretrieve(_data_url, _data_filepath)
('/tmp/tfx-datan3p7t1d2/data.csv', <http.client.HTTPMessage at 0x7f8d2f9f9110>)
ألق نظرة سريعة على ملف CSV.
head {_data_filepath}
species,culmen_length_mm,culmen_depth_mm,flipper_length_mm,body_mass_g 0,0.2545454545454545,0.6666666666666666,0.15254237288135594,0.2916666666666667 0,0.26909090909090905,0.5119047619047618,0.23728813559322035,0.3055555555555556 0,0.29818181818181805,0.5833333333333334,0.3898305084745763,0.1527777777777778 0,0.16727272727272732,0.7380952380952381,0.3559322033898305,0.20833333333333334 0,0.26181818181818167,0.892857142857143,0.3050847457627119,0.2638888888888889 0,0.24727272727272717,0.5595238095238096,0.15254237288135594,0.2569444444444444 0,0.25818181818181823,0.773809523809524,0.3898305084745763,0.5486111111111112 0,0.32727272727272727,0.5357142857142859,0.1694915254237288,0.1388888888888889 0,0.23636363636363636,0.9642857142857142,0.3220338983050847,0.3055555555555556
يجب أن تكون قادرًا على رؤية خمسة أعمدة للميزات. species
هي واحدة من 0 أو 1 أو 2، ويجب على جميع الميزات الأخرى لديها قيم بين 0 و 1. ونحن سوف إنشاء خط أنابيب TFX لتحليل هذه البيانات.
قم بإنشاء مخطط أولي
يتم تعريف خطوط أنابيب TFX باستخدام واجهات برمجة تطبيقات Python. سننشئ خط أنابيب لإنشاء مخطط من أمثلة الإدخال تلقائيًا. يمكن مراجعة هذا المخطط من قبل الإنسان وتعديله حسب الحاجة. بمجرد الانتهاء من المخطط ، يمكن استخدامه للتدريب والتحقق من صحة المثال في المهام اللاحقة.
بالإضافة إلى CsvExampleGen
الذي يستخدم في بسيط TFX خط أنابيب التعليمي ، سوف نستخدم StatisticsGen
و SchemaGen
:
- StatisticsGen بحساب إحصاءات عن مجموعة البيانات.
- SchemaGen يدرس الإحصاءات ويخلق مخطط البيانات الأولية.
اطلع على دليل لكل مكون أو مكونات TFX البرنامج التعليمي لمعرفة المزيد عن هذه المكونات.
اكتب تعريف خط الأنابيب
نحدد وظيفة لإنشاء خط أنابيب TFX. A Pipeline
يمثل الكائن خط أنابيب TFX التي يمكن تشغيلها باستخدام واحدة من شبكات الأنابيب تزامن التي تدعم TFX.
def _create_schema_pipeline(pipeline_name: str,
pipeline_root: str,
data_root: str,
metadata_path: str) -> tfx.dsl.Pipeline:
"""Creates a pipeline for schema generation."""
# Brings data into the pipeline.
example_gen = tfx.components.CsvExampleGen(input_base=data_root)
# NEW: Computes statistics over data for visualization and schema generation.
statistics_gen = tfx.components.StatisticsGen(
examples=example_gen.outputs['examples'])
# NEW: Generates schema based on the generated statistics.
schema_gen = tfx.components.SchemaGen(
statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True)
components = [
example_gen,
statistics_gen,
schema_gen,
]
return tfx.dsl.Pipeline(
pipeline_name=pipeline_name,
pipeline_root=pipeline_root,
metadata_connection_config=tfx.orchestration.metadata
.sqlite_metadata_connection_config(metadata_path),
components=components)
قم بتشغيل خط الأنابيب
سوف نستخدم LocalDagRunner
كما في السابق تعليمي.
tfx.orchestration.LocalDagRunner().run(
_create_schema_pipeline(
pipeline_name=SCHEMA_PIPELINE_NAME,
pipeline_root=SCHEMA_PIPELINE_ROOT,
data_root=DATA_ROOT,
metadata_path=SCHEMA_METADATA_PATH))
INFO:absl:Excluding no splits because exclude_splits is not set. INFO:absl:Excluding no splits because exclude_splits is not set. INFO:absl:Using deployment config: executor_specs { key: "CsvExampleGen" value { beam_executable_spec { python_executor_spec { class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor" } } } } executor_specs { key: "SchemaGen" value { python_class_executable_spec { class_path: "tfx.components.schema_gen.executor.Executor" } } } executor_specs { key: "StatisticsGen" value { beam_executable_spec { python_executor_spec { class_path: "tfx.components.statistics_gen.executor.Executor" } } } } custom_driver_specs { key: "CsvExampleGen" value { python_class_executable_spec { class_path: "tfx.components.example_gen.driver.FileBasedDriver" } } } metadata_connection_config { sqlite { filename_uri: "metadata/penguin-tfdv-schema/metadata.db" connection_mode: READWRITE_OPENCREATE } } INFO:absl:Using connection config: sqlite { filename_uri: "metadata/penguin-tfdv-schema/metadata.db" connection_mode: READWRITE_OPENCREATE } INFO:absl:Component CsvExampleGen is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen" } id: "CsvExampleGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv-schema" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:06.420329" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv-schema.CsvExampleGen" } } } } outputs { outputs { key: "examples" value { artifact_spec { type { name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } } } } } } parameters { parameters { key: "input_base" value { field_value { string_value: "/tmp/tfx-datan3p7t1d2" } } } parameters { key: "input_config" value { field_value { string_value: "{\n \"splits\": [\n {\n \"name\": \"single_split\",\n \"pattern\": \"*\"\n }\n ]\n}" } } } parameters { key: "output_config" value { field_value { string_value: "{\n \"split_config\": {\n \"splits\": [\n {\n \"hash_buckets\": 2,\n \"name\": \"train\"\n },\n {\n \"hash_buckets\": 1,\n \"name\": \"eval\"\n }\n ]\n }\n}" } } } parameters { key: "output_data_format" value { field_value { int_value: 6 } } } parameters { key: "output_file_format" value { field_value { int_value: 5 } } } } downstream_nodes: "StatisticsGen" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized WARNING: Logging before InitGoogleLogging() is written to STDERR I1205 11:10:06.444468 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 11:10:06.453292 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 11:10:06.460209 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 11:10:06.467104 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:select span and version = (0, None) INFO:absl:latest span and version = (0, None) INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 1 I1205 11:10:06.521926 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/CsvExampleGen/examples/1" custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606" } } custom_properties { key: "name" value { string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:CsvExampleGen:examples:0" } } custom_properties { key: "span" value { int_value: 0 } } , artifact_type: name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}), exec_properties={'input_config': '{\n "splits": [\n {\n "name": "single_split",\n "pattern": "*"\n }\n ]\n}', 'output_config': '{\n "split_config": {\n "splits": [\n {\n "hash_buckets": 2,\n "name": "train"\n },\n {\n "hash_buckets": 1,\n "name": "eval"\n }\n ]\n }\n}', 'input_base': '/tmp/tfx-datan3p7t1d2', 'output_file_format': 5, 'output_data_format': 6, 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606'}, execution_output_uri='pipelines/penguin-tfdv-schema/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv-schema/CsvExampleGen/.system/stateful_working_dir/2021-12-05T11:10:06.420329', tmp_dir='pipelines/penguin-tfdv-schema/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info { type { name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen" } id: "CsvExampleGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv-schema" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:06.420329" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv-schema.CsvExampleGen" } } } } outputs { outputs { key: "examples" value { artifact_spec { type { name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } } } } } } parameters { parameters { key: "input_base" value { field_value { string_value: "/tmp/tfx-datan3p7t1d2" } } } parameters { key: "input_config" value { field_value { string_value: "{\n \"splits\": [\n {\n \"name\": \"single_split\",\n \"pattern\": \"*\"\n }\n ]\n}" } } } parameters { key: "output_config" value { field_value { string_value: "{\n \"split_config\": {\n \"splits\": [\n {\n \"hash_buckets\": 2,\n \"name\": \"train\"\n },\n {\n \"hash_buckets\": 1,\n \"name\": \"eval\"\n }\n ]\n }\n}" } } } parameters { key: "output_data_format" value { field_value { int_value: 6 } } } parameters { key: "output_file_format" value { field_value { int_value: 5 } } } } downstream_nodes: "StatisticsGen" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfdv-schema" , pipeline_run_id='2021-12-05T11:10:06.420329') INFO:absl:Generating examples. WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. INFO:absl:Processing input csv data /tmp/tfx-datan3p7t1d2/* to TFExample. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. INFO:absl:Examples generated. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 1 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/CsvExampleGen/examples/1" custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606" } } custom_properties { key: "name" value { string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:CsvExampleGen:examples:0" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}) for execution 1 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component CsvExampleGen is finished. INFO:absl:Component StatisticsGen is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.statistics_gen.component.StatisticsGen" } id: "StatisticsGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv-schema" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:06.420329" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv-schema.StatisticsGen" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv-schema" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:06.420329" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv-schema.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } } outputs { outputs { key: "statistics" value { artifact_spec { type { name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } } parameters { parameters { key: "exclude_splits" value { field_value { string_value: "[]" } } } } upstream_nodes: "CsvExampleGen" downstream_nodes: "SchemaGen" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 11:10:08.104562 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 2 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=2, input_dict={'examples': [Artifact(artifact: id: 1 type_id: 15 uri: "pipelines/penguin-tfdv-schema/CsvExampleGen/examples/1" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "file_format" value { string_value: "tfrecords_gzip" } } custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606" } } custom_properties { key: "name" value { string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:CsvExampleGen:examples:0" } } custom_properties { key: "payload_format" value { string_value: "FORMAT_TF_EXAMPLE" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638702608076 last_update_time_since_epoch: 1638702608076 , artifact_type: id: 15 name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}, output_dict=defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2" custom_properties { key: "name" value { string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:StatisticsGen:statistics:0" } } , artifact_type: name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )]}), exec_properties={'exclude_splits': '[]'}, execution_output_uri='pipelines/penguin-tfdv-schema/StatisticsGen/.system/executor_execution/2/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv-schema/StatisticsGen/.system/stateful_working_dir/2021-12-05T11:10:06.420329', tmp_dir='pipelines/penguin-tfdv-schema/StatisticsGen/.system/executor_execution/2/.temp/', pipeline_node=node_info { type { name: "tfx.components.statistics_gen.component.StatisticsGen" } id: "StatisticsGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv-schema" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:06.420329" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv-schema.StatisticsGen" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv-schema" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:06.420329" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv-schema.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } } outputs { outputs { key: "statistics" value { artifact_spec { type { name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } } parameters { parameters { key: "exclude_splits" value { field_value { string_value: "[]" } } } } upstream_nodes: "CsvExampleGen" downstream_nodes: "SchemaGen" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfdv-schema" , pipeline_run_id='2021-12-05T11:10:06.420329') INFO:absl:Generating statistics for split train. INFO:absl:Statistics for split train written to pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2/Split-train. INFO:absl:Generating statistics for split eval. INFO:absl:Statistics for split eval written to pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2/Split-eval. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 2 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2" custom_properties { key: "name" value { string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:StatisticsGen:statistics:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )]}) for execution 2 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component StatisticsGen is finished. INFO:absl:Component SchemaGen is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.schema_gen.component.SchemaGen" } id: "SchemaGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv-schema" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:06.420329" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv-schema.SchemaGen" } } } } inputs { inputs { key: "statistics" value { channels { producer_node_query { id: "StatisticsGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv-schema" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:06.420329" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv-schema.StatisticsGen" } } } artifact_query { type { name: "ExampleStatistics" } } output_key: "statistics" } min_count: 1 } } } outputs { outputs { key: "schema" value { artifact_spec { type { name: "Schema" } } } } } parameters { parameters { key: "exclude_splits" value { field_value { string_value: "[]" } } } parameters { key: "infer_feature_shape" value { field_value { int_value: 1 } } } } upstream_nodes: "StatisticsGen" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 11:10:10.975282 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 3 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'statistics': [Artifact(artifact: id: 2 type_id: 17 uri: "pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "name" value { string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:StatisticsGen:statistics:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638702610957 last_update_time_since_epoch: 1638702610957 , artifact_type: id: 17 name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )]}, output_dict=defaultdict(<class 'list'>, {'schema': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/SchemaGen/schema/3" custom_properties { key: "name" value { string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:SchemaGen:schema:0" } } , artifact_type: name: "Schema" )]}), exec_properties={'exclude_splits': '[]', 'infer_feature_shape': 1}, execution_output_uri='pipelines/penguin-tfdv-schema/SchemaGen/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv-schema/SchemaGen/.system/stateful_working_dir/2021-12-05T11:10:06.420329', tmp_dir='pipelines/penguin-tfdv-schema/SchemaGen/.system/executor_execution/3/.temp/', pipeline_node=node_info { type { name: "tfx.components.schema_gen.component.SchemaGen" } id: "SchemaGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv-schema" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:06.420329" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv-schema.SchemaGen" } } } } inputs { inputs { key: "statistics" value { channels { producer_node_query { id: "StatisticsGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv-schema" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:06.420329" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv-schema.StatisticsGen" } } } artifact_query { type { name: "ExampleStatistics" } } output_key: "statistics" } min_count: 1 } } } outputs { outputs { key: "schema" value { artifact_spec { type { name: "Schema" } } } } } parameters { parameters { key: "exclude_splits" value { field_value { string_value: "[]" } } } parameters { key: "infer_feature_shape" value { field_value { int_value: 1 } } } } upstream_nodes: "StatisticsGen" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfdv-schema" , pipeline_run_id='2021-12-05T11:10:06.420329') INFO:absl:Processing schema from statistics for split train. INFO:absl:Processing schema from statistics for split eval. INFO:absl:Schema written to pipelines/penguin-tfdv-schema/SchemaGen/schema/3/schema.pbtxt. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 3 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'schema': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/SchemaGen/schema/3" custom_properties { key: "name" value { string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:SchemaGen:schema:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Schema" )]}) for execution 3 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component SchemaGen is finished. I1205 11:10:11.010145 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
يجب أن تشاهد "INFO: absl: تم الانتهاء من SchemaGen المكون." إذا انتهى خط الأنابيب بنجاح.
سوف نفحص ناتج خط الأنابيب لفهم مجموعة البيانات الخاصة بنا.
مراجعة مخرجات خط الأنابيب
كما هو موضح في البرنامج التعليمي السابق، خط أنابيب TFX تنتج نوعين من النتائج، والتحف و الفوقية DB (MLMD) الذي يحتوي على بيانات التعريف من التحف والإعدام خط الانابيب. حددنا موقع هذه المخرجات في الخلايا المذكورة أعلاه. افتراضيا، يتم تخزين القطع الأثرية تحت pipelines
الدليل ويتم تخزين بيانات التعريف باعتباره قاعدة بيانات SQLite تحت metadata
الدليل.
يمكنك استخدام واجهات برمجة تطبيقات MLMD لتحديد هذه المخرجات برمجياً. أولاً ، سنحدد بعض وظائف الأداة المساعدة للبحث عن عناصر الإخراج التي تم إنتاجها للتو.
from ml_metadata.proto import metadata_store_pb2
# Non-public APIs, just for showcase.
from tfx.orchestration.portable.mlmd import execution_lib
# TODO(b/171447278): Move these functions into the TFX library.
def get_latest_artifacts(metadata, pipeline_name, component_id):
"""Output artifacts of the latest run of the component."""
context = metadata.store.get_context_by_type_and_name(
'node', f'{pipeline_name}.{component_id}')
executions = metadata.store.get_executions_by_context(context.id)
latest_execution = max(executions,
key=lambda e:e.last_update_time_since_epoch)
return execution_lib.get_artifacts_dict(metadata, latest_execution.id,
[metadata_store_pb2.Event.OUTPUT])
# Non-public APIs, just for showcase.
from tfx.orchestration.experimental.interactive import visualizations
def visualize_artifacts(artifacts):
"""Visualizes artifacts using standard visualization modules."""
for artifact in artifacts:
visualization = visualizations.get_registry().get_visualization(
artifact.type_name)
if visualization:
visualization.display(artifact)
from tfx.orchestration.experimental.interactive import standard_visualizations
standard_visualizations.register_standard_visualizations()
الآن يمكننا فحص مخرجات تنفيذ خط الأنابيب.
# Non-public APIs, just for showcase.
from tfx.orchestration.metadata import Metadata
from tfx.types import standard_component_specs
metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config(
SCHEMA_METADATA_PATH)
with Metadata(metadata_connection_config) as metadata_handler:
# Find output artifacts from MLMD.
stat_gen_output = get_latest_artifacts(metadata_handler, SCHEMA_PIPELINE_NAME,
'StatisticsGen')
stats_artifacts = stat_gen_output[standard_component_specs.STATISTICS_KEY]
schema_gen_output = get_latest_artifacts(metadata_handler,
SCHEMA_PIPELINE_NAME, 'SchemaGen')
schema_artifacts = schema_gen_output[standard_component_specs.SCHEMA_KEY]
INFO:absl:MetadataStore with DB connection initialized
حان الوقت لفحص مخرجات كل مكون. كما هو موضح أعلاه، Tensorflow التحقق من صحة البيانات (TFDV) يستخدم في StatisticsGen
و SchemaGen
، ويوفر أيضا TFDV التصور من المخرجات من هذه المكونات.
في هذا البرنامج التعليمي ، سوف نستخدم طرق مساعد التصور في TFX والتي تستخدم TFDV داخليًا لإظهار التصور.
افحص الإخراج من StatisticsGen
# docs-infra: no-execute
visualize_artifacts(stats_artifacts)
يمكنك مشاهدة احصائيات مختلفة لبيانات الإدخال. يتم توفير هذه الإحصاءات إلى SchemaGen
لبناء مخطط أولي للبيانات تلقائيا.
افحص الإخراج من SchemaGen
visualize_artifacts(schema_artifacts)
يتم استنتاج هذا المخطط تلقائيًا من إخراج StatisticsGen. يجب أن تكون قادرًا على رؤية 4 ميزات FLOAT وميزة 1 INT.
تصدير مخطط قاعدة البيانات للاستخدام في المستقبل
نحن بحاجة إلى مراجعة وتحسين المخطط الذي تم إنشاؤه. يحتاج المخطط الذي تمت مراجعته إلى الاستمرار في استخدامه في خطوط الأنابيب اللاحقة لتدريب نموذج ML. بمعنى آخر ، قد ترغب في إضافة ملف المخطط إلى نظام التحكم في الإصدار الخاص بك لحالات الاستخدام الفعلي. في هذا البرنامج التعليمي ، سنقوم فقط بنسخ المخطط إلى مسار نظام ملفات محدد مسبقًا من أجل البساطة.
import shutil
_schema_filename = 'schema.pbtxt'
SCHEMA_PATH = 'schema'
os.makedirs(SCHEMA_PATH, exist_ok=True)
_generated_path = os.path.join(schema_artifacts[0].uri, _schema_filename)
# Copy the 'schema.pbtxt' file from the artifact uri to a predefined path.
shutil.copy(_generated_path, SCHEMA_PATH)
'schema/schema.pbtxt'
يستخدم ملف المخطط شكل النص العازلة بروتوكول ومثيل بروتو TensorFlow الفوقية مخطط .
print(f'Schema at {SCHEMA_PATH}-----')
!cat {SCHEMA_PATH}/*
Schema at schema----- feature { name: "body_mass_g" type: FLOAT presence { min_fraction: 1.0 min_count: 1 } shape { dim { size: 1 } } } feature { name: "culmen_depth_mm" type: FLOAT presence { min_fraction: 1.0 min_count: 1 } shape { dim { size: 1 } } } feature { name: "culmen_length_mm" type: FLOAT presence { min_fraction: 1.0 min_count: 1 } shape { dim { size: 1 } } } feature { name: "flipper_length_mm" type: FLOAT presence { min_fraction: 1.0 min_count: 1 } shape { dim { size: 1 } } } feature { name: "species" type: INT presence { min_fraction: 1.0 min_count: 1 } shape { dim { size: 1 } } }
يجب أن تتأكد من مراجعة تعريف المخطط وربما تعديله حسب الحاجة. في هذا البرنامج التعليمي ، سنستخدم مخطط قاعدة البيانات الذي تم إنشاؤه دون تغيير.
التحقق من صحة أمثلة الإدخال وتدريب نموذج ML
وسوف نعود إلى خط الأنابيب الذي خلقنا في بسيط TFX خط أنابيب تعليمي لتدريب نموذج ML واستخدام المخطط إنشاؤها لكتابة رمز تدريبية نموذجية.
ونحن أيضا إضافة ExampleValidator العنصر الذي سوف تبحث عن الشذوذ والقيم المفقودة في مجموعة البيانات الواردة فيما يتعلق المخطط.
اكتب كود التدريب النموذجي
نحن بحاجة إلى كتابة مدونة نموذجية كما فعلنا في بسيط TFX خط أنابيب التعليمي .
النموذج نفسه هو نفسه كما في البرنامج التعليمي السابق ، ولكن هذه المرة سنستخدم المخطط الذي تم إنشاؤه من خط الأنابيب السابق بدلاً من تحديد الميزات يدويًا. لم يتم تغيير معظم الكود. الاختلاف الوحيد هو أننا لا نحتاج إلى تحديد أسماء وأنواع الميزات في هذا الملف. بدلا من ذلك، نقرأ لهم من ملف المخطط.
_trainer_module_file = 'penguin_trainer.py'
%%writefile {_trainer_module_file}
from typing import List
from absl import logging
import tensorflow as tf
from tensorflow import keras
from tensorflow_transform.tf_metadata import schema_utils
from tfx import v1 as tfx
from tfx_bsl.public import tfxio
from tensorflow_metadata.proto.v0 import schema_pb2
# We don't need to specify _FEATURE_KEYS and _FEATURE_SPEC any more.
# Those information can be read from the given schema file.
_LABEL_KEY = 'species'
_TRAIN_BATCH_SIZE = 20
_EVAL_BATCH_SIZE = 10
def _input_fn(file_pattern: List[str],
data_accessor: tfx.components.DataAccessor,
schema: schema_pb2.Schema,
batch_size: int = 200) -> tf.data.Dataset:
"""Generates features and label for training.
Args:
file_pattern: List of paths or patterns of input tfrecord files.
data_accessor: DataAccessor for converting input to RecordBatch.
schema: schema of the input data.
batch_size: representing the number of consecutive elements of returned
dataset to combine in a single batch
Returns:
A dataset that contains (features, indices) tuple where features is a
dictionary of Tensors, and indices is a single Tensor of label indices.
"""
return data_accessor.tf_dataset_factory(
file_pattern,
tfxio.TensorFlowDatasetOptions(
batch_size=batch_size, label_key=_LABEL_KEY),
schema=schema).repeat()
def _build_keras_model(schema: schema_pb2.Schema) -> tf.keras.Model:
"""Creates a DNN Keras model for classifying penguin data.
Returns:
A Keras Model.
"""
# The model below is built with Functional API, please refer to
# https://www.tensorflow.org/guide/keras/overview for all API options.
# ++ Changed code: Uses all features in the schema except the label.
feature_keys = [f.name for f in schema.feature if f.name != _LABEL_KEY]
inputs = [keras.layers.Input(shape=(1,), name=f) for f in feature_keys]
# ++ End of the changed code.
d = keras.layers.concatenate(inputs)
for _ in range(2):
d = keras.layers.Dense(8, activation='relu')(d)
outputs = keras.layers.Dense(3)(d)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(
optimizer=keras.optimizers.Adam(1e-2),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.summary(print_fn=logging.info)
return model
# TFX Trainer will call this function.
def run_fn(fn_args: tfx.components.FnArgs):
"""Train the model based on given args.
Args:
fn_args: Holds args used to train the model as name/value pairs.
"""
# ++ Changed code: Reads in schema file passed to the Trainer component.
schema = tfx.utils.parse_pbtxt_file(fn_args.schema_path, schema_pb2.Schema())
# ++ End of the changed code.
train_dataset = _input_fn(
fn_args.train_files,
fn_args.data_accessor,
schema,
batch_size=_TRAIN_BATCH_SIZE)
eval_dataset = _input_fn(
fn_args.eval_files,
fn_args.data_accessor,
schema,
batch_size=_EVAL_BATCH_SIZE)
model = _build_keras_model(schema)
model.fit(
train_dataset,
steps_per_epoch=fn_args.train_steps,
validation_data=eval_dataset,
validation_steps=fn_args.eval_steps)
# The result of the training should be saved in `fn_args.serving_model_dir`
# directory.
model.save(fn_args.serving_model_dir, save_format='tf')
Writing penguin_trainer.py
لقد أكملت الآن جميع خطوات الإعداد لإنشاء خط أنابيب TFX لتدريب النموذج.
اكتب تعريف خط الأنابيب
وسوف نقوم بإضافة اثنين من عناصر جديدة، Importer
و ExampleValidator
. يقوم المستورد بإحضار ملف خارجي إلى خط أنابيب TFX. في هذه الحالة ، يكون ملفًا يحتوي على تعريف المخطط. سوف يفحص ExampleValidator بيانات الإدخال ويتحقق مما إذا كانت جميع بيانات الإدخال تتوافق مع مخطط البيانات الذي قدمناه.
def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,
schema_path: str, module_file: str, serving_model_dir: str,
metadata_path: str) -> tfx.dsl.Pipeline:
"""Creates a pipeline using predefined schema with TFX."""
# Brings data into the pipeline.
example_gen = tfx.components.CsvExampleGen(input_base=data_root)
# Computes statistics over data for visualization and example validation.
statistics_gen = tfx.components.StatisticsGen(
examples=example_gen.outputs['examples'])
# NEW: Import the schema.
schema_importer = tfx.dsl.Importer(
source_uri=schema_path,
artifact_type=tfx.types.standard_artifacts.Schema).with_id(
'schema_importer')
# NEW: Performs anomaly detection based on statistics and data schema.
example_validator = tfx.components.ExampleValidator(
statistics=statistics_gen.outputs['statistics'],
schema=schema_importer.outputs['result'])
# Uses user-provided Python function that trains a model.
trainer = tfx.components.Trainer(
module_file=module_file,
examples=example_gen.outputs['examples'],
schema=schema_importer.outputs['result'], # Pass the imported schema.
train_args=tfx.proto.TrainArgs(num_steps=100),
eval_args=tfx.proto.EvalArgs(num_steps=5))
# Pushes the model to a filesystem destination.
pusher = tfx.components.Pusher(
model=trainer.outputs['model'],
push_destination=tfx.proto.PushDestination(
filesystem=tfx.proto.PushDestination.Filesystem(
base_directory=serving_model_dir)))
components = [
example_gen,
# NEW: Following three components were added to the pipeline.
statistics_gen,
schema_importer,
example_validator,
trainer,
pusher,
]
return tfx.dsl.Pipeline(
pipeline_name=pipeline_name,
pipeline_root=pipeline_root,
metadata_connection_config=tfx.orchestration.metadata
.sqlite_metadata_connection_config(metadata_path),
components=components)
قم بتشغيل خط الأنابيب
tfx.orchestration.LocalDagRunner().run(
_create_pipeline(
pipeline_name=PIPELINE_NAME,
pipeline_root=PIPELINE_ROOT,
data_root=DATA_ROOT,
schema_path=SCHEMA_PATH,
module_file=_trainer_module_file,
serving_model_dir=SERVING_MODEL_DIR,
metadata_path=METADATA_PATH))
INFO:absl:Excluding no splits because exclude_splits is not set. INFO:absl:Excluding no splits because exclude_splits is not set. INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_trainer.py' (including modules: ['penguin_trainer']). INFO:absl:User module package has hash fingerprint version 000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmp50dqc5bp/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmp6_kn7s87', '--dist-dir', '/tmp/tmpwt7plki0'] /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. setuptools.SetuptoolsDeprecationWarning, listing git files failed - pretending there aren't any INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl'; target user module is 'penguin_trainer'. INFO:absl:Full user module path is 'penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl' INFO:absl:Using deployment config: executor_specs { key: "CsvExampleGen" value { beam_executable_spec { python_executor_spec { class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor" } } } } executor_specs { key: "ExampleValidator" value { python_class_executable_spec { class_path: "tfx.components.example_validator.executor.Executor" } } } executor_specs { key: "Pusher" value { python_class_executable_spec { class_path: "tfx.components.pusher.executor.Executor" } } } executor_specs { key: "StatisticsGen" value { beam_executable_spec { python_executor_spec { class_path: "tfx.components.statistics_gen.executor.Executor" } } } } executor_specs { key: "Trainer" value { python_class_executable_spec { class_path: "tfx.components.trainer.executor.GenericExecutor" } } } custom_driver_specs { key: "CsvExampleGen" value { python_class_executable_spec { class_path: "tfx.components.example_gen.driver.FileBasedDriver" } } } metadata_connection_config { sqlite { filename_uri: "metadata/penguin-tfdv/metadata.db" connection_mode: READWRITE_OPENCREATE } } INFO:absl:Using connection config: sqlite { filename_uri: "metadata/penguin-tfdv/metadata.db" connection_mode: READWRITE_OPENCREATE } INFO:absl:Component CsvExampleGen is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen" } id: "CsvExampleGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv.CsvExampleGen" } } } } outputs { outputs { key: "examples" value { artifact_spec { type { name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } } } } } } parameters { parameters { key: "input_base" value { field_value { string_value: "/tmp/tfx-datan3p7t1d2" } } } parameters { key: "input_config" value { field_value { string_value: "{\n \"splits\": [\n {\n \"name\": \"single_split\",\n \"pattern\": \"*\"\n }\n ]\n}" } } } parameters { key: "output_config" value { field_value { string_value: "{\n \"split_config\": {\n \"splits\": [\n {\n \"hash_buckets\": 2,\n \"name\": \"train\"\n },\n {\n \"hash_buckets\": 1,\n \"name\": \"eval\"\n }\n ]\n }\n}" } } } parameters { key: "output_data_format" value { field_value { int_value: 6 } } } parameters { key: "output_file_format" value { field_value { int_value: 5 } } } } downstream_nodes: "StatisticsGen" downstream_nodes: "Trainer" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 11:10:11.685647 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 11:10:11.692644 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 11:10:11.699625 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 11:10:11.708110 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:select span and version = (0, None) INFO:absl:latest span and version = (0, None) INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 1 I1205 11:10:11.722760 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfdv/CsvExampleGen/examples/1" custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606" } } custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:CsvExampleGen:examples:0" } } custom_properties { key: "span" value { int_value: 0 } } , artifact_type: name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}), exec_properties={'input_base': '/tmp/tfx-datan3p7t1d2', 'input_config': '{\n "splits": [\n {\n "name": "single_split",\n "pattern": "*"\n }\n ]\n}', 'output_data_format': 6, 'output_config': '{\n "split_config": {\n "splits": [\n {\n "hash_buckets": 2,\n "name": "train"\n },\n {\n "hash_buckets": 1,\n "name": "eval"\n }\n ]\n }\n}', 'output_file_format': 5, 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606'}, execution_output_uri='pipelines/penguin-tfdv/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/CsvExampleGen/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info { type { name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen" } id: "CsvExampleGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv.CsvExampleGen" } } } } outputs { outputs { key: "examples" value { artifact_spec { type { name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } } } } } } parameters { parameters { key: "input_base" value { field_value { string_value: "/tmp/tfx-datan3p7t1d2" } } } parameters { key: "input_config" value { field_value { string_value: "{\n \"splits\": [\n {\n \"name\": \"single_split\",\n \"pattern\": \"*\"\n }\n ]\n}" } } } parameters { key: "output_config" value { field_value { string_value: "{\n \"split_config\": {\n \"splits\": [\n {\n \"hash_buckets\": 2,\n \"name\": \"train\"\n },\n {\n \"hash_buckets\": 1,\n \"name\": \"eval\"\n }\n ]\n }\n}" } } } parameters { key: "output_data_format" value { field_value { int_value: 6 } } } parameters { key: "output_file_format" value { field_value { int_value: 5 } } } } downstream_nodes: "StatisticsGen" downstream_nodes: "Trainer" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfdv" , pipeline_run_id='2021-12-05T11:10:11.667239') INFO:absl:Generating examples. INFO:absl:Processing input csv data /tmp/tfx-datan3p7t1d2/* to TFExample. running bdist_wheel running build running build_py creating build creating build/lib copying penguin_trainer.py -> build/lib installing to /tmp/tmp6_kn7s87 running install running install_lib copying build/lib/penguin_trainer.py -> /tmp/tmp6_kn7s87 running install_egg_info running egg_info creating tfx_user_code_Trainer.egg-info writing tfx_user_code_Trainer.egg-info/PKG-INFO writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' Copying tfx_user_code_Trainer.egg-info to /tmp/tmp6_kn7s87/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3.7.egg-info running install_scripts creating /tmp/tmp6_kn7s87/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/WHEEL creating '/tmp/tmpwt7plki0/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl' and adding '/tmp/tmp6_kn7s87' to it adding 'penguin_trainer.py' adding 'tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/METADATA' adding 'tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/WHEEL' adding 'tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/top_level.txt' adding 'tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/RECORD' removing /tmp/tmp6_kn7s87 WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:absl:Examples generated. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 1 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfdv/CsvExampleGen/examples/1" custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606" } } custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:CsvExampleGen:examples:0" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}) for execution 1 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component CsvExampleGen is finished. INFO:absl:Component schema_importer is running. INFO:absl:Running launcher for node_info { type { name: "tfx.dsl.components.common.importer.Importer" } id: "schema_importer" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv.schema_importer" } } } } outputs { outputs { key: "result" value { artifact_spec { type { name: "Schema" } } } } } parameters { parameters { key: "artifact_uri" value { field_value { string_value: "schema" } } } parameters { key: "reimport" value { field_value { int_value: 0 } } } } downstream_nodes: "ExampleValidator" downstream_nodes: "Trainer" execution_options { caching_options { } } INFO:absl:Running as an importer node. INFO:absl:MetadataStore with DB connection initialized I1205 11:10:12.796727 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Processing source uri: schema, properties: {}, custom_properties: {} INFO:absl:Component schema_importer is finished. I1205 11:10:12.806819 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component StatisticsGen is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.statistics_gen.component.StatisticsGen" } id: "StatisticsGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv.StatisticsGen" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } } outputs { outputs { key: "statistics" value { artifact_spec { type { name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } } parameters { parameters { key: "exclude_splits" value { field_value { string_value: "[]" } } } } upstream_nodes: "CsvExampleGen" downstream_nodes: "ExampleValidator" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 11:10:12.827589 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 3 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'examples': [Artifact(artifact: id: 1 type_id: 15 uri: "pipelines/penguin-tfdv/CsvExampleGen/examples/1" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "file_format" value { string_value: "tfrecords_gzip" } } custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606" } } custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:CsvExampleGen:examples:0" } } custom_properties { key: "payload_format" value { string_value: "FORMAT_TF_EXAMPLE" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638702612780 last_update_time_since_epoch: 1638702612780 , artifact_type: id: 15 name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}, output_dict=defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-tfdv/StatisticsGen/statistics/3" custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:StatisticsGen:statistics:0" } } , artifact_type: name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )]}), exec_properties={'exclude_splits': '[]'}, execution_output_uri='pipelines/penguin-tfdv/StatisticsGen/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/StatisticsGen/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/StatisticsGen/.system/executor_execution/3/.temp/', pipeline_node=node_info { type { name: "tfx.components.statistics_gen.component.StatisticsGen" } id: "StatisticsGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv.StatisticsGen" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } } outputs { outputs { key: "statistics" value { artifact_spec { type { name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } } parameters { parameters { key: "exclude_splits" value { field_value { string_value: "[]" } } } } upstream_nodes: "CsvExampleGen" downstream_nodes: "ExampleValidator" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfdv" , pipeline_run_id='2021-12-05T11:10:11.667239') INFO:absl:Generating statistics for split train. INFO:absl:Statistics for split train written to pipelines/penguin-tfdv/StatisticsGen/statistics/3/Split-train. INFO:absl:Generating statistics for split eval. INFO:absl:Statistics for split eval written to pipelines/penguin-tfdv/StatisticsGen/statistics/3/Split-eval. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 3 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-tfdv/StatisticsGen/statistics/3" custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:StatisticsGen:statistics:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )]}) for execution 3 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component StatisticsGen is finished. INFO:absl:Component Trainer is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.trainer.component.Trainer" } id: "Trainer" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv.Trainer" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } inputs { key: "schema" value { channels { producer_node_query { id: "schema_importer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv.schema_importer" } } } artifact_query { type { name: "Schema" } } output_key: "result" } } } } outputs { outputs { key: "model" value { artifact_spec { type { name: "Model" } } } } outputs { key: "model_run" value { artifact_spec { type { name: "ModelRun" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "eval_args" value { field_value { string_value: "{\n \"num_steps\": 5\n}" } } } parameters { key: "module_path" value { field_value { string_value: "penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl" } } } parameters { key: "train_args" value { field_value { string_value: "{\n \"num_steps\": 100\n}" } } } } upstream_nodes: "CsvExampleGen" upstream_nodes: "schema_importer" downstream_nodes: "Pusher" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 11:10:15.426606 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 4 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=4, input_dict={'examples': [Artifact(artifact: id: 1 type_id: 15 uri: "pipelines/penguin-tfdv/CsvExampleGen/examples/1" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "file_format" value { string_value: "tfrecords_gzip" } } custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606" } } custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:CsvExampleGen:examples:0" } } custom_properties { key: "payload_format" value { string_value: "FORMAT_TF_EXAMPLE" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638702612780 last_update_time_since_epoch: 1638702612780 , artifact_type: id: 15 name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )], 'schema': [Artifact(artifact: id: 2 type_id: 17 uri: "schema" custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638702612810 last_update_time_since_epoch: 1638702612810 , artifact_type: id: 17 name: "Schema" )]}, output_dict=defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Trainer/model_run/4" custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model_run:0" } } , artifact_type: name: "ModelRun" )], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Trainer/model/4" custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model:0" } } , artifact_type: name: "Model" )]}), exec_properties={'eval_args': '{\n "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl', 'custom_config': 'null', 'train_args': '{\n "num_steps": 100\n}'}, execution_output_uri='pipelines/penguin-tfdv/Trainer/.system/executor_execution/4/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/Trainer/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/Trainer/.system/executor_execution/4/.temp/', pipeline_node=node_info { type { name: "tfx.components.trainer.component.Trainer" } id: "Trainer" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv.Trainer" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } inputs { key: "schema" value { channels { producer_node_query { id: "schema_importer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv.schema_importer" } } } artifact_query { type { name: "Schema" } } output_key: "result" } } } } outputs { outputs { key: "model" value { artifact_spec { type { name: "Model" } } } } outputs { key: "model_run" value { artifact_spec { type { name: "ModelRun" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "eval_args" value { field_value { string_value: "{\n \"num_steps\": 5\n}" } } } parameters { key: "module_path" value { field_value { string_value: "penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl" } } } parameters { key: "train_args" value { field_value { string_value: "{\n \"num_steps\": 100\n}" } } } } upstream_nodes: "CsvExampleGen" upstream_nodes: "schema_importer" downstream_nodes: "Pusher" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfdv" , pipeline_run_id='2021-12-05T11:10:11.667239') INFO:absl:Train on the 'train' split when train_args.splits is not set. INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set. INFO:absl:udf_utils.get_fn {'eval_args': '{\n "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl', 'custom_config': 'null', 'train_args': '{\n "num_steps": 100\n}'} 'run_fn' INFO:absl:Installing 'pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl' to a temporary directory. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpbb1l9_v7', 'pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl'] Processing ./pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl INFO:absl:Successfully installed 'pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl'. INFO:absl:Training model. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. Installing collected packages: tfx-user-code-Trainer Successfully installed tfx-user-code-Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2 INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Model: "model" INFO:absl:__________________________________________________________________________________________________ INFO:absl:Layer (type) Output Shape Param # Connected to INFO:absl:================================================================================================== INFO:absl:body_mass_g (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:culmen_depth_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:culmen_length_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:flipper_length_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:concatenate (Concatenate) (None, 4) 0 body_mass_g[0][0] INFO:absl: culmen_depth_mm[0][0] INFO:absl: culmen_length_mm[0][0] INFO:absl: flipper_length_mm[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense (Dense) (None, 8) 40 concatenate[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_1 (Dense) (None, 8) 72 dense[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_2 (Dense) (None, 3) 27 dense_1[0][0] INFO:absl:================================================================================================== INFO:absl:Total params: 139 INFO:absl:Trainable params: 139 INFO:absl:Non-trainable params: 0 INFO:absl:__________________________________________________________________________________________________ 100/100 [==============================] - 1s 3ms/step - loss: 0.5752 - sparse_categorical_accuracy: 0.8165 - val_loss: 0.2294 - val_sparse_categorical_accuracy: 0.9400 2021-12-05 11:10:20.208161: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. INFO:tensorflow:Assets written to: pipelines/penguin-tfdv/Trainer/model/4/Format-Serving/assets INFO:tensorflow:Assets written to: pipelines/penguin-tfdv/Trainer/model/4/Format-Serving/assets INFO:absl:Training complete. Model written to pipelines/penguin-tfdv/Trainer/model/4/Format-Serving. ModelRun written to pipelines/penguin-tfdv/Trainer/model_run/4 INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 4 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Trainer/model_run/4" custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model_run:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ModelRun" )], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Trainer/model/4" custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Model" )]}) for execution 4 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component Trainer is finished. I1205 11:10:20.766410 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 11:10:20.770478 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component ExampleValidator is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.example_validator.component.ExampleValidator" } id: "ExampleValidator" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv.ExampleValidator" } } } } inputs { inputs { key: "schema" value { channels { producer_node_query { id: "schema_importer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv.schema_importer" } } } artifact_query { type { name: "Schema" } } output_key: "result" } min_count: 1 } } inputs { key: "statistics" value { channels { producer_node_query { id: "StatisticsGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv.StatisticsGen" } } } artifact_query { type { name: "ExampleStatistics" } } output_key: "statistics" } min_count: 1 } } } outputs { outputs { key: "anomalies" value { artifact_spec { type { name: "ExampleAnomalies" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } } parameters { parameters { key: "exclude_splits" value { field_value { string_value: "[]" } } } } upstream_nodes: "StatisticsGen" upstream_nodes: "schema_importer" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 11:10:20.793696 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 5 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=5, input_dict={'statistics': [Artifact(artifact: id: 3 type_id: 19 uri: "pipelines/penguin-tfdv/StatisticsGen/statistics/3" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:StatisticsGen:statistics:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638702615406 last_update_time_since_epoch: 1638702615406 , artifact_type: id: 19 name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )], 'schema': [Artifact(artifact: id: 2 type_id: 17 uri: "schema" custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638702612810 last_update_time_since_epoch: 1638702612810 , artifact_type: id: 17 name: "Schema" )]}, output_dict=defaultdict(<class 'list'>, {'anomalies': [Artifact(artifact: uri: "pipelines/penguin-tfdv/ExampleValidator/anomalies/5" custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:ExampleValidator:anomalies:0" } } , artifact_type: name: "ExampleAnomalies" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )]}), exec_properties={'exclude_splits': '[]'}, execution_output_uri='pipelines/penguin-tfdv/ExampleValidator/.system/executor_execution/5/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/ExampleValidator/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/ExampleValidator/.system/executor_execution/5/.temp/', pipeline_node=node_info { type { name: "tfx.components.example_validator.component.ExampleValidator" } id: "ExampleValidator" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv.ExampleValidator" } } } } inputs { inputs { key: "schema" value { channels { producer_node_query { id: "schema_importer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv.schema_importer" } } } artifact_query { type { name: "Schema" } } output_key: "result" } min_count: 1 } } inputs { key: "statistics" value { channels { producer_node_query { id: "StatisticsGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv.StatisticsGen" } } } artifact_query { type { name: "ExampleStatistics" } } output_key: "statistics" } min_count: 1 } } } outputs { outputs { key: "anomalies" value { artifact_spec { type { name: "ExampleAnomalies" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } } parameters { parameters { key: "exclude_splits" value { field_value { string_value: "[]" } } } } upstream_nodes: "StatisticsGen" upstream_nodes: "schema_importer" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfdv" , pipeline_run_id='2021-12-05T11:10:11.667239') INFO:absl:Validating schema against the computed statistics for split train. INFO:absl:Validation complete for split train. Anomalies written to pipelines/penguin-tfdv/ExampleValidator/anomalies/5/Split-train. INFO:absl:Validating schema against the computed statistics for split eval. INFO:absl:Validation complete for split eval. Anomalies written to pipelines/penguin-tfdv/ExampleValidator/anomalies/5/Split-eval. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 5 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'anomalies': [Artifact(artifact: uri: "pipelines/penguin-tfdv/ExampleValidator/anomalies/5" custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:ExampleValidator:anomalies:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ExampleAnomalies" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )]}) for execution 5 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component ExampleValidator is finished. INFO:absl:Component Pusher is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.pusher.component.Pusher" } id: "Pusher" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv.Pusher" } } } } inputs { inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } } outputs { outputs { key: "pushed_model" value { artifact_spec { type { name: "PushedModel" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "push_destination" value { field_value { string_value: "{\n \"filesystem\": {\n \"base_directory\": \"serving_model/penguin-tfdv\"\n }\n}" } } } } upstream_nodes: "Trainer" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized INFO:absl:MetadataStore with DB connection initialized I1205 11:10:20.848567 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Going to run a new execution 6 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=6, input_dict={'model': [Artifact(artifact: id: 5 type_id: 22 uri: "pipelines/penguin-tfdv/Trainer/model/4" custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638702620774 last_update_time_since_epoch: 1638702620774 , artifact_type: id: 22 name: "Model" )]}, output_dict=defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Pusher/pushed_model/6" custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Pusher:pushed_model:0" } } , artifact_type: name: "PushedModel" )]}), exec_properties={'push_destination': '{\n "filesystem": {\n "base_directory": "serving_model/penguin-tfdv"\n }\n}', 'custom_config': 'null'}, execution_output_uri='pipelines/penguin-tfdv/Pusher/.system/executor_execution/6/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/Pusher/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/Pusher/.system/executor_execution/6/.temp/', pipeline_node=node_info { type { name: "tfx.components.pusher.component.Pusher" } id: "Pusher" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfdv.Pusher" } } } } inputs { inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfdv" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T11:10:11.667239" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfdv.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } } outputs { outputs { key: "pushed_model" value { artifact_spec { type { name: "PushedModel" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "push_destination" value { field_value { string_value: "{\n \"filesystem\": {\n \"base_directory\": \"serving_model/penguin-tfdv\"\n }\n}" } } } } upstream_nodes: "Trainer" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfdv" , pipeline_run_id='2021-12-05T11:10:11.667239') WARNING:absl:Pusher is going to push the model without validation. Consider using Evaluator or InfraValidator in your pipeline. INFO:absl:Model version: 1638702620 INFO:absl:Model written to serving path serving_model/penguin-tfdv/1638702620. INFO:absl:Model pushed to pipelines/penguin-tfdv/Pusher/pushed_model/6. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 6 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Pusher/pushed_model/6" custom_properties { key: "name" value { string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Pusher:pushed_model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "PushedModel" )]}) for execution 6 INFO:absl:MetadataStore with DB connection initialized I1205 11:10:20.879335 4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component Pusher is finished.
يجب أن تشاهد "INFO: absl: تم الانتهاء من وحدة دفع المكونات." إذا انتهى خط الأنابيب بنجاح.
افحص مخرجات خط الأنابيب
لقد قمنا بتدريب نموذج التصنيف لطيور البطريق ، وقمنا أيضًا بالتحقق من صحة أمثلة الإدخال في مكون ExampleValidator. يمكننا تحليل الناتج من ExampleValidator كما فعلنا مع خط الأنابيب السابق.
metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config(
METADATA_PATH)
with Metadata(metadata_connection_config) as metadata_handler:
ev_output = get_latest_artifacts(metadata_handler, PIPELINE_NAME,
'ExampleValidator')
anomalies_artifacts = ev_output[standard_component_specs.ANOMALIES_KEY]
INFO:absl:MetadataStore with DB connection initialized
يمكن تصور الحالات الشاذة من ExampleValidator أيضًا.
visualize_artifacts(anomalies_artifacts)
يجب أن تشاهد "لم يتم العثور على أي شذوذ" لكل قسم من الأمثلة. نظرًا لأننا استخدمنا نفس البيانات التي تم استخدامها لإنشاء المخطط في خط الأنابيب هذا ، فلا يُتوقع حدوث أي شذوذ هنا. إذا قمت بتشغيل خط الأنابيب هذا بشكل متكرر باستخدام بيانات واردة جديدة ، فيجب أن يتمكن ExampleValidator من العثور على أي تناقضات بين البيانات الجديدة والمخطط الحالي.
إذا تم العثور على أي شذوذ ، يمكنك مراجعة بياناتك للتحقق لمعرفة ما إذا كانت أي أمثلة لا تتبع افتراضاتك. قد تكون المخرجات من مكونات أخرى مثل StatisticsGen مفيدة. ومع ذلك ، فإن أي حالات شاذة تم العثور عليها لن تمنع تنفيذ المزيد من خطوط الأنابيب.
الخطوات التالية
يمكنك العثور على مزيد من الموارد على https://www.tensorflow.org/tfx/tutorials
يرجى الاطلاع على فهم TFX خطوط الأنابيب لمعرفة المزيد عن مفاهيم مختلفة في TFX.