![]() |
![]() |
![]() |
![]() |
本教程提供了一个将数据从 NumPy 数组加载到 tf.data.Dataset
中的示例。
此示例从 .npz
文件加载 MNIST 数据集。但是,NumPy 数组的来源并不重要。
安装
import numpy as np
import tensorflow as tf
从 .npz
文件中加载
DATA_URL = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz'
path = tf.keras.utils.get_file('mnist.npz', DATA_URL)
with np.load(path) as data:
train_examples = data['x_train']
train_labels = data['y_train']
test_examples = data['x_test']
test_labels = data['y_test']
使用 tf.data.Dataset
加载 NumPy 数组
假设您有一个示例数组和相应的标签数组,请将两个数组作为元组传递给 tf.data.Dataset.from_tensor_slices
以创建 tf.data.Dataset
。
train_dataset = tf.data.Dataset.from_tensor_slices((train_examples, train_labels))
test_dataset = tf.data.Dataset.from_tensor_slices((test_examples, test_labels))
使用该数据集
打乱和批次化数据集
BATCH_SIZE = 64
SHUFFLE_BUFFER_SIZE = 100
train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE)
test_dataset = test_dataset.batch(BATCH_SIZE)
建立和训练模型
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(optimizer=tf.keras.optimizers.RMSprop(),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['sparse_categorical_accuracy'])
model.fit(train_dataset, epochs=10)
Epoch 1/10 938/938 [==============================] - 3s 3ms/step - loss: 3.1038 - sparse_categorical_accuracy: 0.8682 Epoch 2/10 938/938 [==============================] - 2s 3ms/step - loss: 0.4801 - sparse_categorical_accuracy: 0.9248 Epoch 3/10 938/938 [==============================] - 2s 3ms/step - loss: 0.3644 - sparse_categorical_accuracy: 0.9421 Epoch 4/10 938/938 [==============================] - 2s 3ms/step - loss: 0.3237 - sparse_categorical_accuracy: 0.9518 Epoch 5/10 938/938 [==============================] - 2s 3ms/step - loss: 0.2789 - sparse_categorical_accuracy: 0.9572 Epoch 6/10 938/938 [==============================] - 2s 3ms/step - loss: 0.2522 - sparse_categorical_accuracy: 0.9621 Epoch 7/10 938/938 [==============================] - 2s 3ms/step - loss: 0.2474 - sparse_categorical_accuracy: 0.9652 Epoch 8/10 938/938 [==============================] - 2s 3ms/step - loss: 0.2237 - sparse_categorical_accuracy: 0.9686 Epoch 9/10 938/938 [==============================] - 2s 3ms/step - loss: 0.2138 - sparse_categorical_accuracy: 0.9717 Epoch 10/10 938/938 [==============================] - 2s 3ms/step - loss: 0.1984 - sparse_categorical_accuracy: 0.9720 <keras.callbacks.History at 0x7feb8cfeeee0>
model.evaluate(test_dataset)
157/157 [==============================] - 0s 2ms/step - loss: 0.6538 - sparse_categorical_accuracy: 0.9504 [0.6537826657295227, 0.9503999948501587]