MoveNet: Mô hình phát hiện tư thế cực nhanh và chính xác.

MoveNet là một nhanh cực và mô hình chính xác mà phát hiện 17 keypoint của một cơ thể. Mô hình này được cung cấp trên TF Hub với hai biến thể, được gọi là Lightning và Thunder. Lightning dành cho các ứng dụng quan trọng về độ trễ, trong khi Thunder dành cho các ứng dụng yêu cầu độ chính xác cao. Cả hai mô hình đều chạy nhanh hơn thời gian thực (30+ FPS) trên hầu hết các máy tính để bàn, máy tính xách tay và điện thoại hiện đại, điều này chứng tỏ rất quan trọng đối với các ứng dụng thể dục trực tiếp, sức khỏe và sức khỏe.

đang vẽ

* Hình ảnh tải về từ Pexels ( https://www.pexels.com/ )

Colab này sẽ hướng dẫn bạn chi tiết về cách tải MoveNet và chạy suy luận trên hình ảnh đầu vào và video bên dưới.

Ước tính tư thế người với MoveNet

Thư viện trực quan hóa & Nhập

pip install -q imageio
pip install -q opencv-python
pip install -q git+https://github.com/tensorflow/docs
import tensorflow as tf
import tensorflow_hub as hub
from tensorflow_docs.vis import embed
import numpy as np
import cv2

# Import matplotlib libraries
from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection
import matplotlib.patches as patches

# Some modules to display an animation using imageio.
import imageio
from IPython.display import HTML, display

Chức năng trợ giúp để trực quan hóa

# Dictionary that maps from joint names to keypoint indices.
KEYPOINT_DICT
= {
   
'nose': 0,
   
'left_eye': 1,
   
'right_eye': 2,
   
'left_ear': 3,
   
'right_ear': 4,
   
'left_shoulder': 5,
   
'right_shoulder': 6,
   
'left_elbow': 7,
   
'right_elbow': 8,
   
'left_wrist': 9,
   
'right_wrist': 10,
   
'left_hip': 11,
   
'right_hip': 12,
   
'left_knee': 13,
   
'right_knee': 14,
   
'left_ankle': 15,
   
'right_ankle': 16
}

# Maps bones to a matplotlib color name.
KEYPOINT_EDGE_INDS_TO_COLOR
= {
   
(0, 1): 'm',
   
(0, 2): 'c',
   
(1, 3): 'm',
   
(2, 4): 'c',
   
(0, 5): 'm',
   
(0, 6): 'c',
   
(5, 7): 'm',
   
(7, 9): 'm',
   
(6, 8): 'c',
   
(8, 10): 'c',
   
(5, 6): 'y',
   
(5, 11): 'm',
   
(6, 12): 'c',
   
(11, 12): 'y',
   
(11, 13): 'm',
   
(13, 15): 'm',
   
(12, 14): 'c',
   
(14, 16): 'c'
}

def _keypoints_and_edges_for_display(keypoints_with_scores,
                                     height
,
                                     width
,
                                     keypoint_threshold
=0.11):
 
"""Returns high confidence keypoints and edges for visualization.

  Args:
    keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing
      the keypoint coordinates and scores returned from the MoveNet model.
    height: height of the image in pixels.
    width: width of the image in pixels.
    keypoint_threshold: minimum confidence score for a keypoint to be
      visualized.

  Returns:
    A (keypoints_xy, edges_xy, edge_colors) containing:
      * the coordinates of all keypoints of all detected entities;
      * the coordinates of all skeleton edges of all detected entities;
      * the colors in which the edges should be plotted.
  """

  keypoints_all
= []
  keypoint_edges_all
= []
  edge_colors
= []
  num_instances
, _, _, _ = keypoints_with_scores.shape
 
for idx in range(num_instances):
    kpts_x
= keypoints_with_scores[0, idx, :, 1]
    kpts_y
= keypoints_with_scores[0, idx, :, 0]
    kpts_scores
= keypoints_with_scores[0, idx, :, 2]
    kpts_absolute_xy
= np.stack(
       
[width * np.array(kpts_x), height * np.array(kpts_y)], axis=-1)
    kpts_above_thresh_absolute
= kpts_absolute_xy[
        kpts_scores
> keypoint_threshold, :]
    keypoints_all
.append(kpts_above_thresh_absolute)

   
for edge_pair, color in KEYPOINT_EDGE_INDS_TO_COLOR.items():
     
if (kpts_scores[edge_pair[0]] > keypoint_threshold and
          kpts_scores
[edge_pair[1]] > keypoint_threshold):
        x_start
= kpts_absolute_xy[edge_pair[0], 0]
        y_start
= kpts_absolute_xy[edge_pair[0], 1]
        x_end
= kpts_absolute_xy[edge_pair[1], 0]
        y_end
= kpts_absolute_xy[edge_pair[1], 1]
        line_seg
= np.array([[x_start, y_start], [x_end, y_end]])
        keypoint_edges_all
.append(line_seg)
        edge_colors
.append(color)
 
if keypoints_all:
    keypoints_xy
= np.concatenate(keypoints_all, axis=0)
 
else:
    keypoints_xy
= np.zeros((0, 17, 2))

 
if keypoint_edges_all:
    edges_xy
= np.stack(keypoint_edges_all, axis=0)
 
else:
    edges_xy
= np.zeros((0, 2, 2))
 
return keypoints_xy, edges_xy, edge_colors


def draw_prediction_on_image(
    image
, keypoints_with_scores, crop_region=None, close_figure=False,
    output_image_height
=None):
 
"""Draws the keypoint predictions on image.

  Args:
    image: A numpy array with shape [height, width, channel] representing the
      pixel values of the input image.
    keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing
      the keypoint coordinates and scores returned from the MoveNet model.
    crop_region: A dictionary that defines the coordinates of the bounding box
      of the crop region in normalized coordinates (see the init_crop_region
      function below for more detail). If provided, this function will also
      draw the bounding box on the image.
    output_image_height: An integer indicating the height of the output image.
      Note that the image aspect ratio will be the same as the input image.

  Returns:
    A numpy array with shape [out_height, out_width, channel] representing the
    image overlaid with keypoint predictions.
  """

  height
, width, channel = image.shape
  aspect_ratio
= float(width) / height
  fig
, ax = plt.subplots(figsize=(12 * aspect_ratio, 12))
 
# To remove the huge white borders
  fig
.tight_layout(pad=0)
  ax
.margins(0)
  ax
.set_yticklabels([])
  ax
.set_xticklabels([])
  plt
.axis('off')

  im
= ax.imshow(image)
  line_segments
= LineCollection([], linewidths=(4), linestyle='solid')
  ax
.add_collection(line_segments)
 
# Turn off tick labels
  scat
= ax.scatter([], [], s=60, color='#FF1493', zorder=3)

 
(keypoint_locs, keypoint_edges,
   edge_colors
) = _keypoints_and_edges_for_display(
       keypoints_with_scores
, height, width)

  line_segments
.set_segments(keypoint_edges)
  line_segments
.set_color(edge_colors)
 
if keypoint_edges.shape[0]:
    line_segments
.set_segments(keypoint_edges)
    line_segments
.set_color(edge_colors)
 
if keypoint_locs.shape[0]:
    scat
.set_offsets(keypoint_locs)

 
if crop_region is not None:
    xmin
= max(crop_region['x_min'] * width, 0.0)
    ymin
= max(crop_region['y_min'] * height, 0.0)
    rec_width
= min(crop_region['x_max'], 0.99) * width - xmin
    rec_height
= min(crop_region['y_max'], 0.99) * height - ymin
    rect
= patches.Rectangle(
       
(xmin,ymin),rec_width,rec_height,
        linewidth
=1,edgecolor='b',facecolor='none')
    ax
.add_patch(rect)

  fig
.canvas.draw()
  image_from_plot
= np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
  image_from_plot
= image_from_plot.reshape(
      fig
.canvas.get_width_height()[::-1] + (3,))
  plt
.close(fig)
 
if output_image_height is not None:
    output_image_width
= int(output_image_height / height * width)
    image_from_plot
= cv2.resize(
        image_from_plot
, dsize=(output_image_width, output_image_height),
         interpolation
=cv2.INTER_CUBIC)
 
return image_from_plot

def to_gif(images, fps):
 
"""Converts image sequence (4D numpy array) to gif."""
  imageio
.mimsave('./animation.gif', images, fps=fps)
 
return embed.embed_file('./animation.gif')

def progress(value, max=100):
 
return HTML("""
      <progress
          value='{value}'
          max='{max}',
          style='width: 100%'
      >
          {value}
      </progress>
  """
.format(value=value, max=max))

Tải mô hình từ trung tâm TF

model_name = "movenet_lightning"

if "tflite" in model_name:
 
if "movenet_lightning_f16" in model_name:
   
!wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/float16/4?lite-format=tflite
    input_size
= 192
 
elif "movenet_thunder_f16" in model_name:
   
!wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/float16/4?lite-format=tflite
    input_size
= 256
 
elif "movenet_lightning_int8" in model_name:
   
!wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/int8/4?lite-format=tflite
    input_size
= 192
 
elif "movenet_thunder_int8" in model_name:
   
!wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/int8/4?lite-format=tflite
    input_size
= 256
 
else:
   
raise ValueError("Unsupported model name: %s" % model_name)

 
# Initialize the TFLite interpreter
  interpreter
= tf.lite.Interpreter(model_path="model.tflite")
  interpreter
.allocate_tensors()

 
def movenet(input_image):
   
"""Runs detection on an input image.

    Args:
      input_image: A [1, height, width, 3] tensor represents the input image
        pixels. Note that the height/width should already be resized and match the
        expected input resolution of the model before passing into this function.

    Returns:
      A [1, 1, 17, 3] float numpy array representing the predicted keypoint
      coordinates and scores.
    """

   
# TF Lite format expects tensor type of uint8.
    input_image
= tf.cast(input_image, dtype=tf.uint8)
    input_details
= interpreter.get_input_details()
    output_details
= interpreter.get_output_details()
    interpreter
.set_tensor(input_details[0]['index'], input_image.numpy())
   
# Invoke inference.
    interpreter
.invoke()
   
# Get the model prediction.
    keypoints_with_scores
= interpreter.get_tensor(output_details[0]['index'])
   
return keypoints_with_scores

else:
 
if "movenet_lightning" in model_name:
   
module = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4")
    input_size
= 192
 
elif "movenet_thunder" in model_name:
   
module = hub.load("https://tfhub.dev/google/movenet/singlepose/thunder/4")
    input_size
= 256
 
else:
   
raise ValueError("Unsupported model name: %s" % model_name)

 
def movenet(input_image):
   
"""Runs detection on an input image.

    Args:
      input_image: A [1, height, width, 3] tensor represents the input image
        pixels. Note that the height/width should already be resized and match the
        expected input resolution of the model before passing into this function.

    Returns:
      A [1, 1, 17, 3] float numpy array representing the predicted keypoint
      coordinates and scores.
    """

    model
= module.signatures['serving_default']

   
# SavedModel format expects tensor type of int32.
    input_image
= tf.cast(input_image, dtype=tf.int32)
   
# Run model inference.
    outputs
= model(input_image)
   
# Output is a [1, 1, 17, 3] tensor.
    keypoints_with_scores
= outputs['output_0'].numpy()
   
return keypoints_with_scores

Ví dụ về hình ảnh đơn

Phiên này cho thấy ví dụ làm việc minumum của chạy mô hình trên một hình ảnh duy nhất để dự đoán 17 keypoint con người.

Tải hình ảnh đầu vào

curl -o input_image.jpeg https://images.pexels.com/photos/4384679/pexels-photo-4384679.jpeg --silent
# Load the input image.
image_path
= 'input_image.jpeg'
image
= tf.io.read_file(image_path)
image
= tf.image.decode_jpeg(image)

Chạy suy luận

# Resize and pad the image to keep the aspect ratio and fit the expected size.
input_image
= tf.expand_dims(image, axis=0)
input_image
= tf.image.resize_with_pad(input_image, input_size, input_size)

# Run model inference.
keypoints_with_scores
= movenet(input_image)

# Visualize the predictions with image.
display_image
= tf.expand_dims(image, axis=0)
display_image
= tf.cast(tf.image.resize_with_pad(
    display_image
, 1280, 1280), dtype=tf.int32)
output_overlay
= draw_prediction_on_image(
    np
.squeeze(display_image.numpy(), axis=0), keypoints_with_scores)

plt
.figure(figsize=(5, 5))
plt
.imshow(output_overlay)
_
= plt.axis('off')

png

Ví dụ về Video (Chuỗi hình ảnh)

Phần này trình bày cách áp dụng tính năng cắt xén thông minh dựa trên các phát hiện từ khung hình trước đó khi đầu vào là một chuỗi các khung hình. Điều này cho phép mô hình tập trung sự chú ý và nguồn lực vào đối tượng chính, dẫn đến chất lượng dự đoán tốt hơn nhiều mà không phải hy sinh tốc độ.

Thuật toán cắt xén

# Confidence score to determine whether a keypoint prediction is reliable.
MIN_CROP_KEYPOINT_SCORE
= 0.2

def init_crop_region(image_height, image_width):
 
"""Defines the default crop region.

  The function provides the initial crop region (pads the full image from both
  sides to make it a square image) when the algorithm cannot reliably determine
  the crop region from the previous frame.
  """

 
if image_width > image_height:
    box_height
= image_width / image_height
    box_width
= 1.0
    y_min
= (image_height / 2 - image_width / 2) / image_height
    x_min
= 0.0
 
else:
    box_height
= 1.0
    box_width
= image_height / image_width
    y_min
= 0.0
    x_min
= (image_width / 2 - image_height / 2) / image_width

 
return {
   
'y_min': y_min,
   
'x_min': x_min,
   
'y_max': y_min + box_height,
   
'x_max': x_min + box_width,
   
'height': box_height,
   
'width': box_width
 
}

def torso_visible(keypoints):
 
"""Checks whether there are enough torso keypoints.

  This function checks whether the model is confident at predicting one of the
  shoulders/hips which is required to determine a good crop region.
  """

 
return ((keypoints[0, 0, KEYPOINT_DICT['left_hip'], 2] >
           MIN_CROP_KEYPOINT_SCORE
or
          keypoints
[0, 0, KEYPOINT_DICT['right_hip'], 2] >
           MIN_CROP_KEYPOINT_SCORE
) and
         
(keypoints[0, 0, KEYPOINT_DICT['left_shoulder'], 2] >
           MIN_CROP_KEYPOINT_SCORE
or
          keypoints
[0, 0, KEYPOINT_DICT['right_shoulder'], 2] >
           MIN_CROP_KEYPOINT_SCORE
))

def determine_torso_and_body_range(
    keypoints
, target_keypoints, center_y, center_x):
 
"""Calculates the maximum distance from each keypoints to the center location.

  The function returns the maximum distances from the two sets of keypoints:
  full 17 keypoints and 4 torso keypoints. The returned information will be
  used to determine the crop size. See determineCropRegion for more detail.
  """

  torso_joints
= ['left_shoulder', 'right_shoulder', 'left_hip', 'right_hip']
  max_torso_yrange
= 0.0
  max_torso_xrange
= 0.0
 
for joint in torso_joints:
    dist_y
= abs(center_y - target_keypoints[joint][0])
    dist_x
= abs(center_x - target_keypoints[joint][1])
   
if dist_y > max_torso_yrange:
      max_torso_yrange
= dist_y
   
if dist_x > max_torso_xrange:
      max_torso_xrange
= dist_x

  max_body_yrange
= 0.0
  max_body_xrange
= 0.0
 
for joint in KEYPOINT_DICT.keys():
   
if keypoints[0, 0, KEYPOINT_DICT[joint], 2] < MIN_CROP_KEYPOINT_SCORE:
     
continue
    dist_y
= abs(center_y - target_keypoints[joint][0]);
    dist_x
= abs(center_x - target_keypoints[joint][1]);
   
if dist_y > max_body_yrange:
      max_body_yrange
= dist_y

   
if dist_x > max_body_xrange:
      max_body_xrange
= dist_x

 
return [max_torso_yrange, max_torso_xrange, max_body_yrange, max_body_xrange]

def determine_crop_region(
      keypoints
, image_height,
      image_width
):
 
"""Determines the region to crop the image for the model to run inference on.

  The algorithm uses the detected joints from the previous frame to estimate
  the square region that encloses the full body of the target person and
  centers at the midpoint of two hip joints. The crop size is determined by
  the distances between each joints and the center point.
  When the model is not confident with the four torso joint predictions, the
  function returns a default crop which is the full image padded to square.
  """

  target_keypoints
= {}
 
for joint in KEYPOINT_DICT.keys():
    target_keypoints
[joint] = [
      keypoints
[0, 0, KEYPOINT_DICT[joint], 0] * image_height,
      keypoints
[0, 0, KEYPOINT_DICT[joint], 1] * image_width
   
]

 
if torso_visible(keypoints):
    center_y
= (target_keypoints['left_hip'][0] +
                target_keypoints
['right_hip'][0]) / 2;
    center_x
= (target_keypoints['left_hip'][1] +
                target_keypoints
['right_hip'][1]) / 2;

   
(max_torso_yrange, max_torso_xrange,
      max_body_yrange
, max_body_xrange) = determine_torso_and_body_range(
          keypoints
, target_keypoints, center_y, center_x)

    crop_length_half
= np.amax(
       
[max_torso_xrange * 1.9, max_torso_yrange * 1.9,
          max_body_yrange
* 1.2, max_body_xrange * 1.2])

    tmp
= np.array(
       
[center_x, image_width - center_x, center_y, image_height - center_y])
    crop_length_half
= np.amin(
       
[crop_length_half, np.amax(tmp)]);

    crop_corner
= [center_y - crop_length_half, center_x - crop_length_half];

   
if crop_length_half > max(image_width, image_height) / 2:
     
return init_crop_region(image_height, image_width)
   
else:
      crop_length
= crop_length_half * 2;
     
return {
       
'y_min': crop_corner[0] / image_height,
       
'x_min': crop_corner[1] / image_width,
       
'y_max': (crop_corner[0] + crop_length) / image_height,
       
'x_max': (crop_corner[1] + crop_length) / image_width,
       
'height': (crop_corner[0] + crop_length) / image_height -
            crop_corner
[0] / image_height,
       
'width': (crop_corner[1] + crop_length) / image_width -
            crop_corner
[1] / image_width
     
}
 
else:
   
return init_crop_region(image_height, image_width)

def crop_and_resize(image, crop_region, crop_size):
 
"""Crops and resize the image to prepare for the model input."""
  boxes
=[[crop_region['y_min'], crop_region['x_min'],
          crop_region
['y_max'], crop_region['x_max']]]
  output_image
= tf.image.crop_and_resize(
      image
, box_indices=[0], boxes=boxes, crop_size=crop_size)
 
return output_image

def run_inference(movenet, image, crop_region, crop_size):
 
"""Runs model inferece on the cropped region.

  The function runs the model inference on the cropped region and updates the
  model output to the original image coordinate system.
  """

  image_height
, image_width, _ = image.shape
  input_image
= crop_and_resize(
    tf
.expand_dims(image, axis=0), crop_region, crop_size=crop_size)
 
# Run model inference.
  keypoints_with_scores
= movenet(input_image)
 
# Update the coordinates.
 
for idx in range(17):
    keypoints_with_scores
[0, 0, idx, 0] = (
        crop_region
['y_min'] * image_height +
        crop_region
['height'] * image_height *
        keypoints_with_scores
[0, 0, idx, 0]) / image_height
    keypoints_with_scores
[0, 0, idx, 1] = (
        crop_region
['x_min'] * image_width +
        crop_region
['width'] * image_width *
        keypoints_with_scores
[0, 0, idx, 1]) / image_width
 
return keypoints_with_scores

Tải trình tự hình ảnh đầu vào

wget -q -O dance.gif https://github.com/tensorflow/tfjs-models/raw/master/pose-detection/assets/dance_input.gif
# Load the input image.
image_path
= 'dance.gif'
image
= tf.io.read_file(image_path)
image
= tf.image.decode_gif(image)

Chạy suy luận với thuật toán cắt xén

# Load the input image.
num_frames
, image_height, image_width, _ = image.shape
crop_region
= init_crop_region(image_height, image_width)

output_images
= []
bar
= display(progress(0, num_frames-1), display_id=True)
for frame_idx in range(num_frames):
  keypoints_with_scores
= run_inference(
      movenet
, image[frame_idx, :, :, :], crop_region,
      crop_size
=[input_size, input_size])
  output_images
.append(draw_prediction_on_image(
      image
[frame_idx, :, :, :].numpy().astype(np.int32),
      keypoints_with_scores
, crop_region=None,
      close_figure
=True, output_image_height=300))
  crop_region
= determine_crop_region(
      keypoints_with_scores
, image_height, image_width)
  bar
.update(progress(frame_idx, num_frames-1))

# Prepare gif visualization.
output
= np.stack(output_images, axis=0)
to_gif
(output, fps=10)

gif